Abstract:
The electrical-thermal characteristics of microfluidic cooled 3-D-integrated circuits (3D-ICs) accounting for thermal metrics, including thermal resistance and pressure d...Show MoreMetadata
Abstract:
The electrical-thermal characteristics of microfluidic cooled 3-D-integrated circuits (3D-ICs) accounting for thermal metrics, including thermal resistance and pressure drop, and electrical metrics, including signal delay and bandwidth density, are investigated in this article. The parametric design exploration of various through-silicon via (TSV)-integrated microfluidic pin-fin heat sinks is modeled using computational fluid dynamics (CFD) and SPICE simulation. The co-integration of micropin-fin and TSVs forms a design interdependence, leading to a tradeoff between electrical and thermal performance. Owing to the complex relationship between electrical and thermal metrics, we explore optimal 3D-IC design solutions using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), a multicriteria decision method to determine the optimized TSV-integrated microfluidic heat sink design with different degrees of weights assigned to thermal and electrical considerations.
Published in: IEEE Transactions on Components, Packaging and Manufacturing Technology ( Volume: 14, Issue: 10, October 2024)