Abstract:
The proliferation of novel industrial applications at the wireless edge, such as smart grids and vehicle networks, demands the advancement of cyber-physical systems (CPSs...Show MoreMetadata
Abstract:
The proliferation of novel industrial applications at the wireless edge, such as smart grids and vehicle networks, demands the advancement of cyber-physical systems (CPSs). The performance of CPSs is closely linked to the last-mile wireless communication networks, which often become bottlenecks due to their inherent limited resources. Current CPS operations often treat wireless communication networks as unpredictable and uncontrollable variables, ignoring the potential adaptability of wireless networks, which results in inefficient and overly conservative CPS operations. Meanwhile, current wireless communications often focus more on throughput and other transmission-related metrics instead of CPS goals. In this study, we introduce the framework of goal-oriented wireless communication resource allocations, accounting for the semantics and significance of data for CPS operation goals. This guarantees optimal CPS performance from a cybernetic standpoint. We formulate a bandwidth allocation problem aimed at maximizing the information utility gain of transmitted data brought to CPS operation goals. Since the goal-oriented bandwidth allocation problem is a large-scale combinational problem, we propose a divide-and-conquer and greedy solution algorithm. The information utility gain is first approximately decomposed into marginal utility information gains and computed in a parallel manner. Subsequently, the bandwidth allocation problem is reformulated as a knapsack problem, which can be further solved greedily with a guaranteed sub-optimality gap. We further demonstrate how our proposed goal-oriented bandwidth allocation algorithm can be applied in four potential CPS applications, including data-driven decision-making, edge learning, federated learning, and distributed optimization. Through simulations, we confirm the effectiveness of our proposed goal-oriented bandwidth allocation framework in meeting CPS goals.
Published in: IEEE Transactions on Wireless Communications ( Volume: 23, Issue: 11, November 2024)
Funding Agency:
Keywords assist with retrieval of results and provide a means to discovering other relevant content. Learn more.
- IEEE Keywords
- Index Terms
- Resource Allocation ,
- Wireless ,
- Communication Resources ,
- Cyber-physical Systems ,
- Communication Resource Allocation ,
- Throughput ,
- Communication Network ,
- Wireless Networks ,
- Information Gain ,
- Marginal Utility ,
- Smart Grid ,
- Federated Learning ,
- Wireless Communication Networks ,
- Bandwidth Allocation ,
- Vehicle Network ,
- Knapsack Problem ,
- Data-driven Decision-making ,
- Loss Function ,
- Objective Function ,
- Test Accuracy ,
- End Devices ,
- Resource Block ,
- Edge Server ,
- Gain Margin ,
- Cost Of Decision ,
- Real-time Data ,
- Iterative Rounds ,
- Data Transmission ,
- Model Weights ,
- Decision Variables
- Author Keywords
Keywords assist with retrieval of results and provide a means to discovering other relevant content. Learn more.
- IEEE Keywords
- Index Terms
- Resource Allocation ,
- Wireless ,
- Communication Resources ,
- Cyber-physical Systems ,
- Communication Resource Allocation ,
- Throughput ,
- Communication Network ,
- Wireless Networks ,
- Information Gain ,
- Marginal Utility ,
- Smart Grid ,
- Federated Learning ,
- Wireless Communication Networks ,
- Bandwidth Allocation ,
- Vehicle Network ,
- Knapsack Problem ,
- Data-driven Decision-making ,
- Loss Function ,
- Objective Function ,
- Test Accuracy ,
- End Devices ,
- Resource Block ,
- Edge Server ,
- Gain Margin ,
- Cost Of Decision ,
- Real-time Data ,
- Iterative Rounds ,
- Data Transmission ,
- Model Weights ,
- Decision Variables
- Author Keywords