IL concept and methods
Abstract:
Indoor localization (IL) is a significant topic of study with several practical applications, particularly in the context of the Internet of Things (IoT) and smart cities...Show MoreMetadata
Abstract:
Indoor localization (IL) is a significant topic of study with several practical applications, particularly in the context of the Internet of Things (IoT) and smart cities. The area of IL has evolved greatly in recent years due to the introduction of numerous technologies such as WiFi, Bluetooth, cameras, and other sensors. Despite the growing interest in this field, there are numerous challenges and drawbacks that must be addressed to develop more accurate and sustainable systems for IL. This review study gives an in-depth look into IL, covering the most promising artificial intelligence-based and hybrid strategies that have shown excellent potential in overcoming some of the limitations of classic methods within IoT environments. In addition, the paper investigates the significance of high-quality datasets and evaluation metrics in the design and assessment of IL algorithms. Furthermore, this overview study emphasizes the crucial role that machine learning techniques, such as deep learning and transfer learning, play in the advancement of IL. A focus on the importance of IL and the various technologies, methods, and techniques that are being used to improve it. Finally, the survey highlights the need for continued research and development to create more accurate and scalable techniques that can be applied across a range of IoT-related industries, such as evacuation-egress routes, hazard-crime detection, smart occupancy-driven energy reduction and asset tracking and management.
IL concept and methods
Published in: IEEE Access ( Volume: 12)
Funding Agency:
Keywords assist with retrieval of results and provide a means to discovering other relevant content. Learn more.
- IEEE Keywords
- Security ,
- Location awareness ,
- Costs ,
- Transfer learning ,
- Reviews ,
- Noise ,
- Scalability
- Index Terms
- Deep Learning ,
- Transfer Learning ,
- Indoor Localization ,
- Internet Of Things ,
- Scaling Technique ,
- Convolutional Neural Network ,
- Local System ,
- Deep Learning Models ,
- Localization Accuracy ,
- Indoor Environments ,
- Inertial Measurement Unit ,
- Target Domain ,
- Wireless Technologies ,
- Domain Adaptation ,
- Local Devices ,
- Source Domain ,
- Graph Neural Networks ,
- Federated Learning ,
- Angle Of Arrival ,
- Digital Twin ,
- Received Signal Strength Indicator ,
- Deep Transfer Learning ,
- Transfer Learning Technique ,
- Visible Light Communication System ,
- Inertial Measurement Unit Data ,
- Deep Neural Network ,
- Recurrent Neural Network ,
- Deep Learning Techniques ,
- Neural Network ,
- Training Data
- Author Keywords
Keywords assist with retrieval of results and provide a means to discovering other relevant content. Learn more.
- IEEE Keywords
- Security ,
- Location awareness ,
- Costs ,
- Transfer learning ,
- Reviews ,
- Noise ,
- Scalability
- Index Terms
- Deep Learning ,
- Transfer Learning ,
- Indoor Localization ,
- Internet Of Things ,
- Scaling Technique ,
- Convolutional Neural Network ,
- Local System ,
- Deep Learning Models ,
- Localization Accuracy ,
- Indoor Environments ,
- Inertial Measurement Unit ,
- Target Domain ,
- Wireless Technologies ,
- Domain Adaptation ,
- Local Devices ,
- Source Domain ,
- Graph Neural Networks ,
- Federated Learning ,
- Angle Of Arrival ,
- Digital Twin ,
- Received Signal Strength Indicator ,
- Deep Transfer Learning ,
- Transfer Learning Technique ,
- Visible Light Communication System ,
- Inertial Measurement Unit Data ,
- Deep Neural Network ,
- Recurrent Neural Network ,
- Deep Learning Techniques ,
- Neural Network ,
- Training Data
- Author Keywords