Abstract:
Power side-channel (PSC) attacks exploit the dynamic power consumption of cryptographic operations to leak sensitive information about encryption hardware. Therefore, it ...Show MoreMetadata
Abstract:
Power side-channel (PSC) attacks exploit the dynamic power consumption of cryptographic operations to leak sensitive information about encryption hardware. Therefore, it is necessary to conduct a PSC analysis to assess the susceptibility of cryptographic systems and mitigate potential risks. Existing PSC analysis primarily focuses on postsilicon implementations, which are inflexible in addressing design flaws, leading to costly and time-consuming postfabrication design re-spins. Hence, presilicon PSC analysis is required for the early detection of vulnerabilities to improve design robustness. In this article, we introduce SCAR, a novel presilicon PSC analysis framework based on graph neural networks (GNNs). SCAR converts register-transfer level (RTL) designs of encryption hardware into control-data flow graphs (CDFGs) and use that to detect the design modules susceptible to side-channel leakage. Furthermore, we incorporate a deep-learning-based explainer in SCAR to generate quantifiable and human-accessible explanations of our detection and localization decisions. We have also developed a fortification component as a part of SCAR that uses large-language models (LLMs) to automatically generate and insert additional design code at the localized zone to shore up the side-channel leakage. When evaluated on popular encryption algorithms like advanced encryption standard (AES), RSA, and PRESENT, and postquantum cryptography (PQC) algorithms like Saber and CRYSTALS-Kyber, SCAR, achieves up to 94.49% localization accuracy, 100% precision, and 90.48% recall. Additionally, through explainability analysis, SCAR reduces features for GNN model training by 57% while maintaining comparable accuracy. We believe that SCAR will transform the security-critical hardware design cycle, resulting in faster design closure at a reduced design cost.
Published in: IEEE Transactions on Very Large Scale Integration (VLSI) Systems ( Volume: 32, Issue: 6, June 2024)