Abstract:
This paper highlights the inefficiency of most distributed controls in dealing with dynamic enhancement while coordinating distributed generators (DGs), leading to poor f...Show MoreMetadata
Abstract:
This paper highlights the inefficiency of most distributed controls in dealing with dynamic enhancement while coordinating distributed generators (DGs), leading to poor frequency dynamics. To address this concern, a two-level coupling-based frequency control strategy for microgrids is proposed in this paper. At the lower level, an adaptive dynamic compensation algorithm is designed to tackle short-term and long-term frequency fluctuations caused by the uncertainties of renewable energy resources (RESs). At the upper level, an adaptive distributed frequency consensus algorithm is developed to address frequency restoration and active power sharing. Furthermore, to account for the potential control interaction of the two designed levels, a nonlinear extended state observer (NESO) is introduced to couple their control dynamics. Simulation tests and hardware-in-the-loop (HIL) experiments confirm the improved frequency dynamics.
Published in: Journal of Modern Power Systems and Clean Energy ( Volume: 12, Issue: 6, November 2024)