Loading [MathJax]/extensions/MathMenu.js
IM-IAD: Industrial Image Anomaly Detection Benchmark in Manufacturing | IEEE Journals & Magazine | IEEE Xplore

IM-IAD: Industrial Image Anomaly Detection Benchmark in Manufacturing


Abstract:

Image anomaly detection (IAD) is an emerging and vital computer vision task in industrial manufacturing (IM). Recently, many advanced algorithms have been reported, but t...Show More

Abstract:

Image anomaly detection (IAD) is an emerging and vital computer vision task in industrial manufacturing (IM). Recently, many advanced algorithms have been reported, but their performance deviates considerably with various IM settings. We realize that the lack of a uniform IM benchmark is hindering the development and usage of IAD methods in real-world applications. In addition, it is difficult for researchers to analyze IAD algorithms without a uniform benchmark. To solve this problem, we propose a uniform IM benchmark, for the first time, to assess how well these algorithms perform, which includes various levels of supervision (unsupervised versus fully supervised), learning paradigms (few-shot, continual and noisy label), and efficiency (memory usage and inference speed). Then, we construct a comprehensive IAD benchmark (IM-IAD), which includes 19 algorithms on seven major datasets with a uniform setting. Extensive experiments (17 017 total) on IM-IAD provide in-depth insights into IAD algorithm redesign or selection. Moreover, the proposed IM-IAD benchmark challenges existing algorithms and suggests future research directions. For reproducibility and accessibility, the source code is uploaded to the website: https://github.com/M-3LAB/open-iad
Published in: IEEE Transactions on Cybernetics ( Volume: 54, Issue: 5, May 2024)
Page(s): 2720 - 2733
Date of Publication: 21 February 2024

ISSN Information:

PubMed ID: 38381632

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.