Processing math: 100%
Ringbot: Monocycle Robot With Legs | IEEE Journals & Magazine | IEEE Xplore

Ringbot: Monocycle Robot With Legs


Abstract:

This article presents the development and evaluation of Ringbot, a novel leg-wheel transformer robot incorporating a monocycle mechanism with legs. Ringbot aims to provid...Show More

Abstract:

This article presents the development and evaluation of Ringbot, a novel leg-wheel transformer robot incorporating a monocycle mechanism with legs. Ringbot aims to provide versatile mobility by replacing the driver and driving components of a conventional monocycle vehicle with legs mounted on compact driving modules inside the wheel. The article covers the hardware and software implementation of a prototype robot. The Ringbot prototype features a wheel and two driving modules located inside, each equipped with a 3-DoF leg for balancing, steering, and legged motions to assist monocycle driving. The driving control is achieved through decoupled speed controller and steering controller. In addition, active-legged motions are implemented and managed through a finite-state machine. The controllers for wheeled driving and legged motions were tested in a simulation environment, as well as on the hardware prototype, to verify the concept of a monocycle with legs and evaluate the prototype's capabilities.
Published in: IEEE Transactions on Robotics ( Volume: 40)
Page(s): 1890 - 1905
Date of Publication: 06 February 2024

ISSN Information:

References is not available for this document.

Select All
1.
H. Bae, I. Lee, T. Jung, and J.-H. Oh, “Walking-wheeling dual mode strategy for humanoid robot, DRC-HUBO,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2016, pp. 1342–1348.
2.
A. Stentz, “CHIMP, the CMU highly intelligent mobile platform,” J. Field Robot., vol. 32, no. 2, pp. 209–228, 2015.
3.
S. Karumanchi, “Team RoboSimian: Semi-autonomous mobile manipulation at the 2015 DARPA robotics challenge finals,” J. Field Robot., vol. 34, no. 2, pp. 305–332, 2017.
4.
M. Geilinger, R. Poranne, R. Desai, B. Thomaszewski, and S. Coros, “Skaterbots: Optimization-based design and motion synthesis for robotic creatures with legs and wheels,” ACM Trans. Graph., vol. 37, no. 4, pp. 1–12, 2018.
5.
M. Bjelonic, “Keep Rollin'—Whole-body motion control and planning for wheeled quadrupedal robots,” IEEE Robot. Automat. Lett., vol. 4, no. 2, pp. 2116–2123, Apr. 2019.
6.
M. Bjelonic, P. K. Sankar, C. D. Bellicoso, H. Vallery, and M. Hutter, “Rolling in the deep–hybrid locomotion for wheeled-legged robots using online trajectory optimization,” IEEE Robot. Automat. Lett., vol. 5, no. 2, pp. 3626–3633, Apr. 2020.
7.
V. Klemm, “LQR-assisted whole-body control of a wheeled bipedal robot with kinematic loops,” IEEE Robot. Automat. Lett., vol. 5, no. 2, pp. 3745–3752, Apr. 2020.
8.
X. Li, H. Zhou, H. Feng, S. Zhang, and Y. Fu, “Design and experiments of a novel hydraulic wheel-legged robot (WLR ),” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2018, pp. 3292–3297.
9.
N. Kashiri, “CENTAURO: A hybrid locomotion and high power resilient manipulation platform,” IEEE Robot. Automat. Lett., vol. 4, no. 2, pp. 1595–1602, Apr. 2019.
10.
S.-H. Yun, J. Park, J. Seo, and Y.-J. Kim, “Development of an agile omnidirectional mobile robot with GRF compensated wheel-leg mechanisms for human environments,” IEEE Robot. Automat. Lett., vol. 6, no. 4, pp. 8301–8308, Oct. 2021.
11.
C. Zheng, S. Sane, K. Lee, V. Kalyanram, and K. Lee, “\mathbf {\alpha } -WaLTR: Adaptive wheel-and-leg transformable robot for versatile multiterrain locomotion,” IEEE Trans. Robot., vol. 39, no. 2, pp. 941–958, Apr. 2023.
12.
R. Cao, J. Gu, C. Yu, and A. Rosendo, “OmniWheg: An omnidirectional wheel-leg transformable robot,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2022, pp. 5626–5631.
13.
H.-Y. Wang, L.-J. Chen, W.-S. Yu, and P.-C. Lin, “A wheel to leg transformation strategy in a leg-wheel transformable robot,” in Proc. IEEE/ASME Int. Conf. Adv. Intell. Mechatron., 2023, pp. 293–298.
14.
N. Tan, R. E. Mohan, and K. Elangovan, “Scorpio: A biomimetic reconfigurable rolling–crawling robot,” Int. J. Adv. Robot. Syst., vol. 13, no. 5, 2016, Art. no. 1729881416658180.
15.
Z. Huang, “Design and analysis of a transformable spherical robot for multi-mode locomotion,” in Proc. IEEE Int. Conf. Mechatron. Automat., 2017, pp. 1469–1473.
16.
H.-M. Maus, S. Lipfert, M. Gross, J. Rummel, and A. Seyfarth, “Upright human gait did not provide a major mechanical challenge for our ancestors,” Nature Commun., vol. 1, no. 1, 2010, Art. no. 70.
17.
M. J. van den Broek, “Fast self-stable planar bipedal running,” Ph.D. dissertation, TU Delft, 2019.
18.
C. W. Bert, “Dynamics and stability of unicycles and monocycles,” Dyn. Stability Syst., vol. 5, no. 1, pp. 30–35, 1990.
19.
S.-J. Tsai, E. Ferreira, and C. Paredis, “Control of the gyrover. a single-wheel gyroscopically stabilized robot,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 1999, pp. 179–184.
20.
Y. Ou and Y. Xu, “Stabilization and line tracking of the gyroscopically stabilized robot,” in Proc. IEEE Int. Conf. Robot. Automat., 2002, pp. 1753–1758.
21.
P. Cieslak, T. Buratowski, T. Uhl, and M. Giergiel, “The mono-wheel robot with dynamic stabilisation,” Robot. Auton. Syst., vol. 59, no. 9, pp. 611–619, 2011.
22.
M. Forouhar, M. H. Abedin-Nasab, and G. Liu, “Introducing GyroSym: A single-wheel robot,” Int. J. Dyn. Control, vol. 8, pp. 404–417, 2020.
23.
M. Spong, “The swing up control problem for the Acrobot,” IEEE Control Syst. Mag., vol. 15, no. 1, pp. 49–55, Feb. 1995.
24.
S. C. Brown and K. M. Passino, “Intelligent control for an Acrobot,” J. Intell. Robot. Syst., vol. 18, pp. 209–248, 1997.
25.
J. Hauser and R. M. Murray, “Nonlinear controllers for non-integrable systems: The acrobot example,” in Proc. Amer. Control Conf., 1990, pp. 669–671.
26.
S. Bortoff and M. Spong, “Pseudolinearization of the acrobot using spline functions,” in Proc. IEEE 31st Conf. Decis. Control, 1992, pp. 593–598.
27.
T. Kobayashi, T. Komine, S. Suzuki, M. Iwase, and K. Furuta, “Swing-up and balancing control of Acrobot,” in Proc. 41st SICE Annu. Conf., 2002, pp. 3072–3075.
28.
J. Guerrero, R. Chapuis, R. Aufrére, L. Malaterre, and F. Marmoiton, “Road curb detection using traversable ground segmentation: Application to autonomous shuttle vehicle navigation,” in Proc. IEEE 16th Int. Conf. Control Automat. Robot. Vis., 2020, pp. 266–272.
29.
P. A. Weber and J. P. Braaksma, “Towards a North American geometric design standard for speed humps,” ITE J., vol. 70, no. 1, pp. 30–39, 2000.

References

References is not available for this document.