Abstract:
Inferring potential relationships among long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and diseases play a crucial role in investigation of disease aetiology and pat...Show MoreMetadata
Abstract:
Inferring potential relationships among long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and diseases play a crucial role in investigation of disease aetiology and pathogenesis. Due to the high cost of laboratory experiments, there is a practical requirement to develop appropriate computational methods that promise to accelerate the experimental screening process for potential lncRNA-disease associations (LDAs), miRNA-disease associations (MDAs), and lncRNA-miRNA interactions (LMIs). However, most existing methods are applied to predict LDAs, MDAs, and LMIs in specific domains, neglecting the important benefits of integrating multiple sources data and limiting the ability of transferring models to other tasks. Furthermore, with the high sparsity of LDA, MDA, and LMI data, it is difficult for many computational models to exploit enough knowledge to learn the comprehensive patterns of node embedding. In this study, inspired by the recent success of graph contrastive learning, we develop a Contrastive Self-supervised Graph convolutional network to identify potential LDAs, MDAs, and LMIs (called CSGLMD). CSGLMD combines supervised learning and self-supervised learning to fully capture node features. Specifically, CSGLMD primarily leverages the rich association and similarity relationships among lncRNA, miRNA, and disease to construct a lncRNA-miRNA-disease heterogeneous graph (LMDHG) that contains three types of biological entities. It can effectively embed multi-source biological data and assist the model extension to other prediction tasks. In addition, we consider applying a label instantiation mechanism to make the LMDHG better adapt graph neural network structures and control the strength of similarity relationships between the same biological entities. Secondly, CSGLMD implements graph convolutional network (GCN) as encoder to extract node embedding features from the LMDHG, and utilizes a multi-relational modelling decoder to predict LDAs, MDAs, or LMIs. Finall...
Date of Conference: 05-08 December 2023
Date Added to IEEE Xplore: 18 January 2024
ISBN Information: