Introduction
Photovoltaic generator (PVG) interfaced voltage-source converters (VSCs) are commonly used for utility grid integration due to easy implementation and lower losses [1], [2]. However, the advancement of power semiconductors and magnetic materials allows current-source converters (CSCs) to be an alternative option for PV grid integration as they offer a boost-type feature with smooth dc-current and short-circuit protection capability [3]. Moreover, its operation life is higher than VSC's and is widely used in motor drive applications and offshore wind farms [4].
The grid strength is known as the short-circuit ratio (SCR), where short-circuit capacity at the point-of-common-coupling (PCC) to the rated dc power of the interconnected converter defines SCR [2], [6]. The grid is weak with 2≤SCR≤3 and very weak when SCR<2. The converter adopts a phase-locked-loop (PLL) for the synchronization; however, in a weak grid, it triggers low- and high-frequency instability and affects power injection capability [8]. Therefore, it has become a research interest for utility-scale PV grid-tied systems [5], [6], [7], [8], [9], [10], [11].
Under fast-changing environmental conditions, the PVG operating point moves from the right (CVR: constant voltage region) to the left (CCR: constant current region) of the maximum power point (MPP). Therefore, the forward-biased diode in a PVG equivalent model results in an operating-point-dependent dynamic resistance, which varies from low to high value when PVG moves from CVR to CCR [3], [6].
In the literature, the dynamic resistance impact on stability is carried out from a single converter point of view (either VSC or CSC) [3], [6], [11], [12], [13], [14]. The PV-CSC system suffers from high-frequency instability at the CCR [3] compared to the low- and high-frequency instability for a weak grid-tied VSC [5]. The reduced dc-link capacitance introduces unstable poles in the control loop [11] and increases the oscillation amplitude in the CCR [12]. The dynamic resistance in the PVG reduces the MPP current by 3% [13] and affects the stability at the MPP and CCR; however, it improves with a higher resistance in the dc-link capacitance [14]. If multiple converters are connected in parallel, how the dynamic resistance (e.g., one converter in the CVR and the other in the CCR) in a weak grid impacts the control interactions and stability is still unknown; however, it must be considered to analyze the stability correctly.
The grid impedance in a weak VSC system affects the low- and high-frequency stability [2], and the current controllers' proportional gain dominates the instability [5]. Moreover, in a weak grid, the PVG at the CCR with nominal dc-capacitance induces low- and high-frequency instabilities compared to the medium-frequency oscillations with reduced dc-capacitance at the CVR [6]. The control interaction and oscillation increase under low SCR, affecting power injection capacity; however, improved control overcomes it [7]. The higher PLL bandwidth in a weak grid decreases the stability margin [8], affecting the current control negatively to lose PLL synchronization [9], and reduces the impedance magnitude at low frequencies in a weak CSC system [10]. The inner, outer, and PLL control bandwidth interactions determine the stability boundary [15]; moreover, a power control loop bandwidth dominates the oscillations and decreases the damping in a weak grid; however, the controller in [16] and a compensator in [17] reduces the VSC systems oscillation and improves damping and stability. In a weak VSC system, the ac voltage control loop introduces low-frequency oscillations [18], and the PCC voltage fluctuations introduce negative damping; however, the controller in [19] and an impedance reshaping in [20] improve it with higher damping and stability. The studies in [5], [6], [7], [8], [9], [10], [15], [16], [17], [18], [19], [20] did not analyze the stability with changing PVG dynamic resistance in a weak grid; moreover, the control interaction differences among VSC and CSC systems and damping improvement.
The studies above give insights into the stability of a single converter system; however, if the converters are connected in parallel to increase the power rating, the control interactions must be addressed in a non-stiff grid [21]. The PLL interactions in a weak grid-tied parallel VSCs system increase, resulting in instability; however, reduced PLL bandwidth [22] and an improved notch filter ensure stability [23]. In parallel VSCs, the interactions from the inner current control loop and parallel VSCs influence synchronization and stability [24]; moreover, one VSC suffers from the interaction effects of the other at the PCC [25]. In parallel VSCs, the dynamic coupling under asymmetrical fault [26] and a weak grid [27] increases interactions, decreasing damping and resulting in instability. However, the study ignored the source dynamics effect and did not report any stability improvement methods. Interaction mechanisms and stability boundary of paralleled VSCs under different current injections were carried out in [28], ignoring the wind turbine dynamics. When parallel converters share the same ac and dc buses, a circulating current flows; therefore, a suppression method was proposed in [29]. The multiconverter interaction in a weak grid affects the synchronization stability; however, a feed-forward compensated PLL improves it [30]. Reference [31] revealed that filter and grid inductance affects the low- and high-frequency resonance in multi-VSC systems, resulting in PCC voltage fluctuations and instability; however, it did not show stability enhancement. The interactions among wind turbine-based multi-VSC systems and their impact on dc-link voltage stability under varying SCR, operating points, and control parameters were carried out in [32], ignoring the wind turbine dynamics. Moreover, it did not report any method to reduce the interactions in low SCR. The work in [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32] studied parallel VSCs interaction and stability but ignored the impacts of PVG dynamic resistance on control interactions in weak grids. Moreover, no solution was proposed to reduce the interactions and maintain stability with rated power injection. Therefore, the modeling, dynamic interactions, and stability improvements of parallel VSCs when connected to a weak grid considering changing PVG dynamic resistance are still unknown, demanding a detailed study.
Direct current control and low switching frequency in high-power CSCs offer to operate in parallel to increase the power rating; however, a few studies addressed it [33], [34], [35]. Multiple resonance modes arise (fixed high and variable low frequency) from the multi-CSCs interaction, affecting the power quality and stability; therefore, an active damper was proposed in [33] to suppress the resonance modes. However, it did not consider control interactions under changing source dynamics in a weak ac grid and no stability improvement methods. The authors in [34] reported the harmonic performance improvement of a stiff grid-tied multi-CSCs system, reducing the common-mode voltage (CMV) peak. Moreover, multilevel CSC was reported in [35] but did not develop the mathematical model to analyze the control interaction and stability in a weak grid. Reference [36] analyzed a VSC-CSC system's dc-link voltage and current interactions. However, the study did not report the impacts of changing PVG operating points (at CVR, MPP, and CCR) on frequency oscillations under changing SCR. Moreover, the study did not characterize the interactions in the following cases: 1) parallel VSCs connected to a weak grid and 2) parallel CSCs connected to a weak grid. Therefore, the mathematical modeling, dynamic control interactions, and stability improvements of weak grid-tied parallel CSCs considering PVG dynamic resistance demand a detailed study.
There is a gap in the reported parallel converters studies with the following: 1) Interaction, stability analysis, and stability improvement of PV-based parallel VSCs weak grid system considering the PVG operating point changes from the CVR to the CCR, and 2) mathematical model development, dynamic interaction, stability analysis and stabilization of parallel CSCs weak grid system considering the PVG dynamic resistance. Therefore, to fill the gaps, considering the changing PVG dynamics, this paper develops the mathematical model of a paralleled VSCs and CSCs system to characterize the control interaction and its impact on dc-link stability for a weak grid system in each case and differentiate the instability among two systems when PVG operates at CVR, MPP, and CCR under changing SCR levels. Furthermore, compensators are proposed for both paralleled converter systems to reduce the dynamic interactions in each case and to improve stability with rated power injection under changing PVG dynamics. The contributions of this paper are:
Developing a mathematical model for a utility-scale PV-based parallel VSCs and CSCs system considering the PVG dynamic resistance, control loops interactions, and weak grid conditions,
Characterizing the interaction and stability differences among parallel VSCs and CSCs systems considering the dynamic resistance, SCR, and control parameters and
Developing parallel VSCs and CSCs weak grid systems compensation assuring dc-link stabilities, improved damping, and rated power injection at a very weak grid.
The following section first develops the parallel VSCs' mathematical model and explains PV-VSC systems control and dynamic PVG model. Section III presents parallel CSCs' mathematical model and PV-CSC control dynamics. The dynamic control interactions and stability differences among two parallel converter systems when connected to a weak grid under changing PVG dynamics and operating conditions are presented in Section IV. Section V presents the compensation methods for weak grid-tied parallel VSCs and CSCs systems to ensure stability with reduced control interactions. Finally, the time domain simulation results in Section VI and real-time simulation results in Section VII show the stability differences and verify the proposed compensators' effectiveness.
Modeling and Control of Parallel VSCs System
The PVG-interfaced grid-tied parallel VSCs system is shown in Fig. 1, where the PVGs are rated at 1.0 MW. The complete system and control parameters are given in Appendix A. For simplified analysis, the system and control parameters of VSC1 and VSC2 in Fig. 1 are assumed to be identical.
A. Parallel VSCs Model Dynamics
The capacitor (
\begin{align*}
{\vec{v}}_{in} =& \left({s{L}_{fn} + {R}_{fn} + j\omega {L}_{fn}} \right){\vec{i}}_n + {\vec{v}}_n \tag{1a}\\
{\vec{i}}_n =& \left({s{C}_{fn} + j\omega {C}_{fn}} \right){\vec{v}}_n + {\vec{i}}_{Ln} \tag{1b}\\
{\vec{v}}_n =& \left({s{L}_n + j\omega {L}_n} \right){\vec{i}}_{Ln} + {\vec{v}}_{pcc} \tag{1c}\\
N{\vec{v}}_{pcc} =& \left({s{L}_g + j\omega {L}_g} \right){\vec{i}}_g + {\vec{v}}_g \tag{1d}\\
\frac{1}{2}s{C}_{dcn}V_{dcn}^2 =& {V}_{dcn}{I}_{pvn} - {P}_{dcvscn} \tag{1e}
\end{align*}
B. PV-VSC Control System
Fig. 2 shows the VSC control system, where
The MPPT controller generates the reference dc-voltage
\begin{align*}
i_d^* =& \left({V_{dc}^2 - V_{dc}^{*2}} \right){G}^{vdc}\left(s \right) + \frac{{\eta {P}_{pv}}}{{1.5v_d^0}} \tag{2a}\\
i_q^* =& \frac{{ - 1}}{{1.5v_d^0}}\left({v_d^* - v_d^c} \right){G}^{vac}\left(s \right) \tag{2b}
\end{align*}
The current controller
\begin{align*}
v_{idq}^c =& \left({i_{dq}^* - i_{dq}^c} \right){G}^i\left(s \right) + j\omega {L}_fi_{dq}^c + v_{dq}^c \tag{2c}\\
\frac{{d\varepsilon }}{{dt}} =& \omega = \frac{{v_q^c}}{{v_d^0}}{G}^\varepsilon \left(s \right) + {\omega }^0 \tag{2d}
\end{align*}
C. Weak Grid Characteristics
The transmission line with a large grid impedance results in a weak grid, significantly impacting the control interactions. The SCR quantifies the strength of a power grid at the point of interconnection (POI), which is the ratio of the grid short-circuit capacity
\begin{equation*}
SCR = \frac{{{S}_{ac}}}{{{P}_{pvrated}}} = \frac{{v_g^2/\left({\omega .{L}_g} \right)}}{{{P}_{pvrated}}} \tag{3}
\end{equation*}
The SCR calculation for this study includes the number of parallel converters. From (3), the POI can be identified as strong (SCR>3), weak (2≤SCR≤3), and very weak (SCR<2).
D. PV System Model
Fig. 3 shows a PVG equivalent circuit consisting of
\begin{align*}
{I}_{pv} =& {N}_p{I}_{ph} - {N}_p{I}_{rs}\left({exp\left\{ {\frac{{q\left({{V}_{pv} + \left({{N}_s/{N}_p} \right){R}_s{I}_{pv}} \right)}}{{{N}_s{n}_sAkT}}} \right\} - 1} \right)\,\\
& - \ \,\frac{{{V}_{pv} + \left({{N}_s/{N}_p} \right){R}_s{I}_{pv}}}{{\left({{N}_s/{N}_p} \right){R}_{sh}}} \tag{4a}
\end{align*}
The
\begin{align*}
{r}_d =& - {\left({\frac{{d{I}_{pv}}}{{d{V}_{pv}}}} \right)}^{ - 1}\\
=&\frac{{1 + \frac{{{R}_s}}{{{R}_{sh}}} + \frac{{{I}_{rs\cdot}q\cdot{R}_s}}{{{n}_s \cdot A \cdot k \cdot T}}exp\left({\frac{{q\left({{V}_{pv} + \left({\frac{{{N}_s}}{{{N}_p}}{R}_s} \right){I}_{pv}} \right)}}{{{N}_s \cdot {n}_s \cdot A \cdot k \cdot T}}} \right)}}{{\frac{1}{{\left({\frac{{{N}_s}}{{{N}_p}}{R}_s} \right)}} + \frac{{q \cdot {N}_p \cdot {I}_{rs}}}{{{N}_s \cdot {n}_s \cdot A \cdot k \cdot T}}exp\left({\frac{{q\left({{V}_{pv} + \left({\frac{{{N}_s}}{{{N}_p}}{R}_s} \right){I}_{pv}} \right)}}{{{N}_s \cdot {n}_s \cdot A \cdot k \cdot T}}} \right)}} \tag{4b}
\end{align*}
The total PVG resistance
\begin{equation*}
{r}_D = \frac{{{N}_s}}{{{N}_P}}\left[ {\left({{r}_d\parallel {R}_{sh}} \right) + {R}_s} \right] \tag{4c}
\end{equation*}
As shown in Fig. 3, the PVG operating regions at the left and right of the maximum power point (MPP) are the constant current region (CCR) and constant voltage region (CVR), resulting in
Modeling and Control of Parallel CSCs System
Fig. 4 shows the 1.0 MW PVG interfaced grid-tied parallel CSCs system, where the control and parameters of CSC1 and CSC2 are identical and listed in Appendix A. The series diode in insulated gate bipolar transistor (IGBT) in Fig. 4 increases the reverse voltage capability.
A. Parallel CSCs Model Dynamics
Fig. 4 shows that an inductor (
\begin{align*}
{\vec{i}}_{wn} =& \left({s{C}_{sn} + j\omega {C}_{sn}} \right){\vec{v}}_{sn} + {\vec{i}}_{sn} \tag{5a}\\
{\vec{v}}_{sn} =& \left({s{L}_n + j{\rm{\omega }}{L}_n} \right){\vec{i}}_{sn} + {\vec{v}}_{pcc} \tag{5b}\\
N{\vec{v}}_{pcc} =& \left({s{L}_g + j\omega {L}_g} \right){\vec{i}}_g + {\vec{v}}_g \tag{5c}\\
\frac{1}{2}s{L}_{dcn}I_{dcn}^2 =& {V}_{pvn}{I}_{dcn} - {P}_{dcn} \tag{5d}
\end{align*}
Considering the loss across the CSC is negligible,
B. PV-CSC Control System
Fig. 5 shows the CSC control system, where
The MPPT controller generates the reference dc-current
\begin{align*}
i_{sd}^* =& \left({I_{dc}^{*2} - I_{dc}^2} \right){G}_{idc}\left(s \right) \tag{6a}\\
i_{sq}^* =& \frac{{ - 1}}{{1.5v_{sd}^0}}\left({v_{sd}^* - v_{sd}^c} \right){G}_{vac}\left(s \right) \tag{6b}
\end{align*}
Furthermore, a PI current controller
\begin{align*}
i_{wdq}^c =& d_{dq}^c{I}_{dc} = \left({i_{sdq}^* - i_{sdq}^c} \right){G}_i\left(s \right) \tag{6c}\\
\frac{{d\delta }}{{dt}} =& \omega = \frac{{v_{sq}^c}}{{v_{sd}^0}}{G}_\delta \left(s \right) + {\omega }^0 \tag{6d}
\end{align*}
The parallel CSCs study in [33], [34], [35] did not consider PVG dynamics to analyze how CSCs in parallel connections interact and its influence on stability when tied to a weak grid. Moreover, control interaction differences among parallel VSCs and multi-CSCs systems under different PVG operating regions (at MPP, CVR, and CCR) and grid strengths are still unknown. Therefore, the PVG dynamics in a weak ac grid system are considered in this paper to characterize the control interactions and stability of two parallel systems correctly.
Weak Grid-Tied Parallel VSCs and Parallel CSCs System Interaction Analysis
This section analyzes and differentiates the weak grid-tied parallel VSCs and CSCs dc-link interactions with the changing PVG dynamic resistance and control parameters.
A. Parallel Converters Dynamic Interaction Mechanism
In a converter system, the PCC voltage becomes sensitive to changing SCR and PVG dynamic resistance [32]. Operating the PVG in one converter at the CCR compared to the MPP and CVR operational regions in a weak ac grid affects dc-link stability and output power, leading to terminal voltage change, PLL operation, and PCC voltage. Furthermore, coupling affects the terminal voltage and PLL operation of the other converters, leading to output power changes and dc-link stability [36]. Therefore, under varying PVG dynamics in a weak grid, the control interactions that affect the stability of dc-link voltage control in paralleled VSCs and dc-link current control in paralleled CSCs are investigated in this paper.
B. Linearization and Stability Analysis
The equations in (1a)–(4c) and (4a)–(6d) can be merged to obtain parallel VSCs and CSCs system state-space models as
\begin{equation*}
\left\{ {\begin{array}{c} {\dot{x} = f\left({x,u,d,r} \right)}\\ {y = h\left({x,u,d,r} \right)} \end{array}} \right. \tag{7a}
\end{equation*}
The steady-state
The state-space model equilibrium point is obtained using the MATLAB symbolic toolbox by setting all the differential equations in (7a) to zero. Finally, the transfer function
\begin{equation*}
{G}_Y\left(s \right) = \frac{{Y\left(s \right)}}{{U\left(s \right)}} = C{\left({sI - A} \right)}^{ - 1}B \tag{7b}
\end{equation*}
The following cases are considered to investigate the dc-link dynamic interactions and differences among parallel VSCs and CSCs systems.
1) Effect of Changing SCR
The effect of changing SCR (i.e., high to low) on the frequency response of the VSC1 control variable (
Effect of varying SCR on parallel VSCs: (a)
2) Effect of PVG Dynamic Resistance
Fig. 8 shows the effect of varying PVG dynamic resistance on parallel VSCs and CSCs systems dc-link interactions under changing grid-strength conditions. For parallel VSCs, the PVG in VSC2 at the CCR (i.e., high
3) Effect of Converters Power Injection
Fig. 9 shows the impact of converter2’s power injection on the
4) Effect of PLL Bandwidth
The parallel converters' dc-link interaction with the changing PLL bandwidth of converter1 (
C. Eigenvalue Analysis
Fig. 11(a) shows that if SCR decreases from 4 to 1.2, the VSC1s terminal voltage eigenvalue (
Proposed Compensator of the Parallel Systems
From Section IV, the dc-link dynamic interactions between the parallel converters increase when PVG enters the CCR in a weak grid that deteriorates the dc-link stability. Moreover, the changing PLL bandwidth influences parallel VSCs' and CSCs' dc-link interactions differently. Considering the PVG dynamic resistance effect, no compensation methods were proposed in the literature to reduce the dynamic interactions maintaining the dc-link stability for weak grid-tied parallel VSCs and CSCs systems [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33]. Therefore, a compensator is proposed to ensure reduced dc-link interactions and stability in parallel converters system when PVG moves from CVR to CCR under different operating conditions. The signals
\begin{align*}
\!\!\!\!v_{id}^c \!=\!& \left(i_d^* \!-\! i_d^c \!-\! \overbrace {K_v\frac{{2{\varepsilon }_v{\omega }_vs}}{{{s}^2 \!+\! 2{\varepsilon }_v{\omega }_vs \!+\! \omega _v^2}}\omega}^{{x}_d\left(s \right)} \right)\!{G}^i\left(s \right) - {\rm{\omega }}{L}_fi_q^c + v_d^c \tag{8a}\\
\!\!\!\! v_{iq}^c \!=\!& \left(i_q^* \!-\! i_q^c \!+\! \overbrace {{K}_q\frac{{{\omega }_q}}{{s + {\omega }_q}}v_q^c}^{{x}_q\left(s \right)}\right. \left.- \overbrace {K_d\frac{{{\omega }_d}}{{s + {\omega }_d}}v_d^c}^{{x}_{dd}\left(s \right)}\right)\!{G}^i\left(s \right) + {\rm{\omega }}{L}_fi_d^c + v_q^c \tag{8b}\\
\!\!\!\! i_{wd}^c =& \left(i_{sd}^* - i_{sd}^c - \overbrace {K_c\frac{{2{\varepsilon }_c{\omega }_cs}}{{{s}^2 + 2{\varepsilon }_c{\omega }_cs + \omega _c^2}}\omega}^{{y}_d\left(s \right)} \right)\!{G}_i(s) \tag{9a}\\
\!\!\!\! i_{wq}^c \!=\!& \left(i_{sq}^* \!-\! i_{sq}^c \!+\! \overbrace {{K}_{qq}\frac{{{\omega }_{qq}}}{{s \!+ {\omega }_{qq}}}v_{sq}^c}^{{y}_q\left(s \right)} - \overbrace {K_{dd}\frac{{{\omega }_{dd}}}{{s + {\omega }_{dd}}}v_{sd}^c}^{{y}_{qq}\left(s \right)}\right)\!{G}_i\left(s \right) \tag{9b}
\end{align*}
A. Compensated VSC Systems Parameters Design
The compensator adds four states to the state-space model of each VSC, and the design steps are: 1)
i) {x}_q(s) Design
If SCR decreases from 4 to 1.2, the diamond-shaped PLL input voltage eigenvalue (
VSC systems compensator design: (a) design of
However, if
ii) {x}_d(s) Design
To improve the stability with SCR = 1.2, in addition to
iii) {x}_{dd}(s) Design
A scaled
Compared to the dominant VSCs eigenvalues placement in Fig. 11, correctly selecting the compensators' gain and cut-off frequency ensures stable operation at SCR = 1.2 by placing all the eigenvalues to the left sides of the
B. Compensated CSC Systems Parameters Design
The CSC compensated signals in (9a) and (9b) add four states in the state-space model, and the design steps are: 1)
i) {y}_q(s) Design
The gain (
CSC systems compensator design: (a) design of
ii) {y}_d(s) Design
In this case, in addition to
iii) {y}_{qq}(s) Design
Although
Compared to the uncompensated CSC systems' eigenvalue placement in Fig. 12, the proposed compensator maintains a stable operation when connected to a weak grid if the gain and cut-off frequencies are properly selected, which will ensure the reduced dynamic interactions in a parallel CSCs system at different operating conditions.
C. Impact of the Proposed Compensator
The compensated parallel VSCs system response in Fig. 15(a) shows the decreased magnitude and resonance peak of
Simulation Results
The dc-link dynamic interactions, stability comparisons, and the robustness of the proposed compensator of PV-interfaced weak grid-tied utility-scale parallel VSCs and CSCs systems in Figs. 1 and 4 are validated with time-domain simulation results in MATLAB/Simulink using a 20 μs sampling time. The complete system parameters are listed in Appendix A.
A. Uncompensated Parallel VSCs and Parallel CSCs System at Different SCR and {r}_d Conditions
The uncompensated responses of parallel VSCs (i.e.,
B. Compensated Parallel Converters Operation
The proposed compensator is implemented, and its impact on parallel VSCs and CSCs operation is shown in Figs. 18 and 19, respectively. The compensated
Effect of the proposed compensator on parallel VSCs operation: (a) SCR=4, (b) SCR=2, (c) changing SCR from 4 to 1.2 and (d) changing PVG operating conditions for SCR=2.5.
Effect of the proposed compensator on parallel CSCs operation: (a) SCR=4, (b) SCR=2, (c) changing SCR from 4 to 1.2, and (d) changing PVG operating conditions for SCR=2.5.
The compensated
Power injection with the proposed compensator: (a) parallel VSCs and (b) parallel CSCs.
C. Parallel Converters Operation Under Fault
A single-line-to-ground fault is applied for four cycles at the CVR, MPP, and CCR, and Fig. 21 shows its impact on parallel converters' dc-link operation. The compensated
Effect of the proposed compensator under fault: (a)
D. Effect of Changing PLL Bandwidth
For parallel VSCs, if
Validation Results
To validate the effectiveness of the proposed compensation method in ensuring stability and reduced dc-link dynamic interactions between the parallel converters at weak grid conditions considering PVG dynamic resistance, the OPAL-RT OP5600 setup shown in Fig. 23 has been used for real-time simulations. The setup adopts a Virtex-6 FPGA board with a step time of 290 ns, and it is fully integrated with MATLAB/Simulink. In real-time, parallel VSCs and CSCs systems are simulated with a 20 μs sampling time, and the parallel converters compensation methods are implemented to verify their real-time performance. Finally, the I/O unit accesses the results to display on a 500 MHz oscilloscope. The host PC is connected to the real-time simulator to change the input data, i.e., dynamic resistance, grid strength, and control parameters.
The uncompensated real-time simulated responses of
In the following case, the PVG in converter1 operates from CVR to CCR, whereas the PVG in converter2 operates at the MPP, and the impacts of PVG dynamics on parallel VSCs and parallel CSCs dc-link responses are shown in Fig. 25 for SCR=2.5. The uncompensated
Fig. 26(a) and (b) show the compensated responses for parallel VSCs and CSCs systems, respectively, with SCR=4. The
Compensated parallel converters operation with SCR=4: (a) parallel VSCs and (b) parallel CSCs.
Compensated parallel converters operation with SCR=2: (a) parallel VSCs and (b) parallel CSCs.
Fig. 28 shows that the uncompensated
Finally, the proposed compensator is implemented in the real-time simulations, and its effectiveness is demonstrated in Fig. 29. Compared to the uncompensated
Conclusion
This paper investigated the dc-link interaction and stability differences among the weak grid-tied parallel VSCs and parallel CSCs systems, considering the impacts of PVG dynamic resistance. The linearized model is developed to characterize the parallel converters' dc-link interaction and its effect on stability under PVG operating regions changing from the CVR to CCR, varying SCR, and PLL bandwidth changes. Furthermore, a stability enhancement method has been proposed for both systems to maintain stability at all PVG operating conditions (CVR, MPP, and CCR) with reduced interactions and rated power injection into the grid when tied to a very weak grid (SCR=1.2). Furthermore, the detailed nonlinear time-domain and real-time simulation results have verified the proposed stability enhancement method. The findings are:
A PVG at the CCR in a weak grid influences the low-frequency (<60 Hz) dc-link instability for parallel VSCs compared to the high-frequency (>200 Hz) instability for parallel CSCs.
The parallel VSCs dc-link suffer from low-frequency instability followed by oscillations with SCR=2 compared to the only low-frequency instability in parallel CSCs.
The oscillation magnitude of uncompensated parallel VSCs
is higher than that in parallel CSCs at SCR=1.2 (almost four times higher in the case studied).{P}_{grid} In a weak grid, if converter1 PLL bandwidth exceeds that of converter2 PLL, stability improves for parallel VSCs; however, it decreases for parallel CSCs.
The proposed compensator improves the stability, reduces the dc-link interactions, and injects rated power at SCR=1.2.
Appendix ASystem Parameters
System Parameters
PVG Parameters (Standard Conditions)
S = 1.0 kW/m2, T = 298 K,
VSC Parameters
VSC 1 and 2: 1.0 MVA,
CSC Parameters
CSC 1 and 2: 1.0 MVA,
Strong Grid: 36 MVA (rated), 12.47 kV (ph-ph rms), 60 Hz, X/R=7.0.
Appendix BParallel Converters Linearized Model
Parallel Converters Linearized Model
Parallel VSCs DC and AC-Side Dynamics
\begin{align*} \frac{d}{{dt}}\left[\begin{array}{c} {\Delta {V}_{dc1}}\\ {\Delta {V}_{dc2}} \end{array} \right] =& \frac{{ - 1.5}}{{{C}_{dc1}}}\bigg(\left[ \begin{array}{c} {{I}_{d1}}\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} {{I}_{q1}}\\ 0 \end{array} \right]\left[ \begin{array}{c} {\Delta {d}_{d1}}\\ {\Delta {d}_{q1}} \end{array} \right] \\ &+ \left[ \begin{array}{c} {{D}_{d1}}\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} {{D}_{q1}}\\ 0 \end{array} \right]\left[ \begin{array}{c} {\Delta {i}_{d1}}\\ {\Delta {i}_{q1}} \end{array} \right] \bigg)\\ & - \ \frac{{1.5}}{{{C}_{dc2}}}\bigg(\left[ \begin{array}{c} {{I}_{d2}}\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} {{I}_{q2}}\\ 0 \end{array} \right]\left[ \begin{array}{c} {\Delta {d}_{d2}}\\ {\Delta {d}_{q2}} \end{array} \right]\\ & + \left[ \begin{array}{c} {{D}_{d2}}\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} {{D}_{q2}}\\ 0 \end{array} \right]\left[ \begin{array}{c} {\Delta {i}_{d2}}\\ {\Delta {i}_{q2}} \end{array} \right] \bigg)\\ & + \left[ \begin{array}{c} {\frac{1}{{{C}_{dc1}}}}\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} 0\\ {\frac{1}{{{C}_{dc2}}}} \end{array} \right]\left[ \begin{array}{c} {\Delta {I}_{pv1}}\\ {\Delta {I}_{pv2}} \end{array} \right]\\ \frac{d}{{dt}}\left[ \begin{array}{c} {\Delta {i}_{d1}}\\ {\Delta {i}_{q1}} \end{array} \right] =& \frac{{{V}_{dc1}}}{{{L}_{f1}}}\left[ \begin{array}{c} {\Delta {d}_{d1}}\\ {\Delta {d}_{q1}} \end{array} \right] + \frac{1}{{{L}_{f1}}}\left[ \begin{array}{c} {{D}_{d1}}\\ {{D}_{q1}} \end{array} \right]\Delta {V}_{dc1} \\ &\!\!-\! \!\frac{1}{{{L}_{f1}}}\left[ \begin{array}{c} {\Delta {v}_d}\\ {\Delta {v}_q} \end{array} \right] - \bigg[ \begin{array}{c} {\frac{{{R}_{f1}}}{{{L}_{f1}}}}\\ {{\omega }_1} \end{array}\ \ \ \ \begin{array}{c} { - {\omega }_1}\\ {\frac{{{R}_{f1}}}{{{L}_{f1}}}} \end{array} \bigg]\bigg[ \begin{array}{cc} {\Delta {i}_{d1}}\\ {\Delta {i}_{q1}} \end{array} \!\bigg]\\ \frac{d}{{dt}}\left[ \begin{array}{c} {\Delta {i}_{d2}}\\ {\Delta {i}_{q2}} \end{array} \right] =& \frac{{{V}_{dc2}}}{{{L}_{f2}}}\left[ {\begin{array}{c} {\Delta {d}_{d2}}\\ {\Delta {d}_{q2}} \end{array}} \right] + \frac{1}{{{L}_{f2}}}\left[ \!{\begin{array}{c} {{D}_{d2}}\\ {{D}_{q2}} \end{array}} \right]\Delta {V}_{dc2}\\ & - \frac{1}{{{L}_{f2}}}\left[ {\begin{array}{c} {\Delta {v}_d}\\ {\Delta {v}_q} \end{array}}\! \right] - \left[ \begin{array}{c} {\frac{{{R}_{f2}}}{{{L}_{f2}}}}\\ {{\omega }_2} \end{array}\ \ \ \ \ \ \begin{array}{c} { - {\omega }_2}\\ {\frac{{{R}_{f2}}}{{{L}_{f2}}}} \end{array} \right]\\ & \times \left[ {\begin{array}{c} {\Delta {i}_{d2}}\\ {\Delta {i}_{q2}} \end{array}} \right]\\ \frac{d}{{dt}}\left[ \begin{array}{c} {\Delta {v}_d}\\ {\Delta {v}_q} \end{array} \right] =& \frac{1} {{2{C}_{f1}}}\left[ \begin{array}{c} {\Delta {i}_{d1}}\\ {\Delta {i}_{q1}} \end{array} \right] + \frac{1} {{2{C}_{f2}}}\bigg[ \begin{array}{c} {\Delta {i}_{d2}}\\ {\Delta {i}_{q2}} \end{array} \bigg]\\ &- \frac{1}{2}\bigg[ \begin{array}{c} 0\\ {{\omega }_1 + {\omega }_2} \end{array}\ \ \ \ \ \ \begin{array}{c} { - {\omega }_1 - {\omega }_2}\\ 0 \end{array} \bigg]\bigg[ \begin{array}{c} {\Delta {v}_d}\\ {\Delta {v}_q} \end{array} \bigg] \end{align*} View Source\begin{align*} \frac{d}{{dt}}\left[\begin{array}{c} {\Delta {V}_{dc1}}\\ {\Delta {V}_{dc2}} \end{array} \right] =& \frac{{ - 1.5}}{{{C}_{dc1}}}\bigg(\left[ \begin{array}{c} {{I}_{d1}}\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} {{I}_{q1}}\\ 0 \end{array} \right]\left[ \begin{array}{c} {\Delta {d}_{d1}}\\ {\Delta {d}_{q1}} \end{array} \right] \\ &+ \left[ \begin{array}{c} {{D}_{d1}}\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} {{D}_{q1}}\\ 0 \end{array} \right]\left[ \begin{array}{c} {\Delta {i}_{d1}}\\ {\Delta {i}_{q1}} \end{array} \right] \bigg)\\ & - \ \frac{{1.5}}{{{C}_{dc2}}}\bigg(\left[ \begin{array}{c} {{I}_{d2}}\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} {{I}_{q2}}\\ 0 \end{array} \right]\left[ \begin{array}{c} {\Delta {d}_{d2}}\\ {\Delta {d}_{q2}} \end{array} \right]\\ & + \left[ \begin{array}{c} {{D}_{d2}}\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} {{D}_{q2}}\\ 0 \end{array} \right]\left[ \begin{array}{c} {\Delta {i}_{d2}}\\ {\Delta {i}_{q2}} \end{array} \right] \bigg)\\ & + \left[ \begin{array}{c} {\frac{1}{{{C}_{dc1}}}}\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} 0\\ {\frac{1}{{{C}_{dc2}}}} \end{array} \right]\left[ \begin{array}{c} {\Delta {I}_{pv1}}\\ {\Delta {I}_{pv2}} \end{array} \right]\\ \frac{d}{{dt}}\left[ \begin{array}{c} {\Delta {i}_{d1}}\\ {\Delta {i}_{q1}} \end{array} \right] =& \frac{{{V}_{dc1}}}{{{L}_{f1}}}\left[ \begin{array}{c} {\Delta {d}_{d1}}\\ {\Delta {d}_{q1}} \end{array} \right] + \frac{1}{{{L}_{f1}}}\left[ \begin{array}{c} {{D}_{d1}}\\ {{D}_{q1}} \end{array} \right]\Delta {V}_{dc1} \\ &\!\!-\! \!\frac{1}{{{L}_{f1}}}\left[ \begin{array}{c} {\Delta {v}_d}\\ {\Delta {v}_q} \end{array} \right] - \bigg[ \begin{array}{c} {\frac{{{R}_{f1}}}{{{L}_{f1}}}}\\ {{\omega }_1} \end{array}\ \ \ \ \begin{array}{c} { - {\omega }_1}\\ {\frac{{{R}_{f1}}}{{{L}_{f1}}}} \end{array} \bigg]\bigg[ \begin{array}{cc} {\Delta {i}_{d1}}\\ {\Delta {i}_{q1}} \end{array} \!\bigg]\\ \frac{d}{{dt}}\left[ \begin{array}{c} {\Delta {i}_{d2}}\\ {\Delta {i}_{q2}} \end{array} \right] =& \frac{{{V}_{dc2}}}{{{L}_{f2}}}\left[ {\begin{array}{c} {\Delta {d}_{d2}}\\ {\Delta {d}_{q2}} \end{array}} \right] + \frac{1}{{{L}_{f2}}}\left[ \!{\begin{array}{c} {{D}_{d2}}\\ {{D}_{q2}} \end{array}} \right]\Delta {V}_{dc2}\\ & - \frac{1}{{{L}_{f2}}}\left[ {\begin{array}{c} {\Delta {v}_d}\\ {\Delta {v}_q} \end{array}}\! \right] - \left[ \begin{array}{c} {\frac{{{R}_{f2}}}{{{L}_{f2}}}}\\ {{\omega }_2} \end{array}\ \ \ \ \ \ \begin{array}{c} { - {\omega }_2}\\ {\frac{{{R}_{f2}}}{{{L}_{f2}}}} \end{array} \right]\\ & \times \left[ {\begin{array}{c} {\Delta {i}_{d2}}\\ {\Delta {i}_{q2}} \end{array}} \right]\\ \frac{d}{{dt}}\left[ \begin{array}{c} {\Delta {v}_d}\\ {\Delta {v}_q} \end{array} \right] =& \frac{1} {{2{C}_{f1}}}\left[ \begin{array}{c} {\Delta {i}_{d1}}\\ {\Delta {i}_{q1}} \end{array} \right] + \frac{1} {{2{C}_{f2}}}\bigg[ \begin{array}{c} {\Delta {i}_{d2}}\\ {\Delta {i}_{q2}} \end{array} \bigg]\\ &- \frac{1}{2}\bigg[ \begin{array}{c} 0\\ {{\omega }_1 + {\omega }_2} \end{array}\ \ \ \ \ \ \begin{array}{c} { - {\omega }_1 - {\omega }_2}\\ 0 \end{array} \bigg]\bigg[ \begin{array}{c} {\Delta {v}_d}\\ {\Delta {v}_q} \end{array} \bigg] \end{align*}
VSC AC, DC-Link Current, PCC Voltage and PLL Control
\begin{align*} \left[ {\begin{array}{c} {\Delta v_{id}^c}\\ {\Delta v_{iq}^c} \end{array}} \right] =& \left[ {\begin{array}{c} { - K_p^i}\\ {\omega {L}_f} \end{array}\ \ \ \ \ \ \begin{array}{c} { - \omega {L}_f}\\ { - K_p^i} \end{array}} \right]\left[ {\begin{array}{c} {\Delta i_d^c}\\ {\Delta i_q^c} \end{array}} \right] + \left[ {\begin{array}{c} {\Delta \varphi _d^i}\\ {\Delta \varphi _q^i} \end{array}} \right] \\ & + \left[ {\begin{array}{c} {\Delta v_d^c}\\ {\Delta v_q^c} \end{array}} \right] + \left[ {\begin{array}{c} {K_p^i}\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} 0\\ {K_p^i} \end{array}} \right]\left[ {\begin{array}{c} {\Delta i_d^*}\\ {\Delta i_q^*} \end{array}} \right]\\ \left[ {\begin{array}{c} {\Delta \dot{\varphi }_d^i}\\ {\Delta \dot{\varphi }_q^i} \end{array}} \right] =& \left[ {\begin{array}{c} {K_i^i}\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} 0\\ {K_i^i} \end{array}} \right]\left[ {\begin{array}{c} {\Delta i_d^*}\\ {\Delta i_q^*} \end{array}} \right] + \left[ {\begin{array}{c} { - K_i^i}\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} 0\\ { - K_i^i} \end{array}} \right]\\ & \times \left[ {\begin{array}{c} {\Delta i_d^c}\\ {\Delta i_q^c} \end{array}} \right]\\ \left[ {\begin{array}{c} {\Delta \dot{V}_{dc}^2}\\ {\Delta \dot{\varphi }_v^{dc}} \end{array}} \right] =& \left[ {\begin{array}{c} {\frac{{2I_{pv}^0}}{{{C}_{dc}V_{dc}^0}}}\\ { - K_i^{vdc}} \end{array}\ \ \ \ \ \ \begin{array}{c} 0\\ 0 \end{array}} \right]\left[ {\begin{array}{c} {\Delta V_{dc}^2}\\ {\Delta \varphi _v^{dc}} \end{array}} \right] + \left[ {\begin{array}{c} {\frac{{2V_{dc}^0}}{{{C}_{dc}}}\ \ \ 0}\\ {\ \ \ \ 0\ \ \ {K}_{ivdc}} \end{array}} \right]\\ & \times \left[ {\begin{array}{c} {\Delta {I}_{pv}}\\ {\Delta V_{dc}^{*2}} \end{array}} \right] + \left[ {\begin{array}{c} {\frac{{ - 3i_d^0}}{{{C}_{dc}}}}\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} {\frac{{ - 3i_q^0}}{{{C}_{dc}}}}\\ 0 \end{array}} \right]\\ & + \ \left[ {\begin{array}{c} {\frac{{ - 3v_d^0}}{{{C}_{dc}}}}\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} {\frac{{ - 3v_q^0}}{{{C}_{dc}}}}\\ 0 \end{array}} \right]\left[ {\begin{array}{c} {\Delta {i}_d}\\ {\Delta {i}_q} \end{array}} \right] \\ & + \left[ {\begin{array}{c} {\frac{{ - 3i_d^0}}{{{C}_{dc}}}}\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} {\frac{{ - 3i_q^0}}{{{C}_{dc}}}}\\ 0 \end{array}} \right]\left[ {\begin{array}{c} {\Delta {v}_d}\\ {\Delta {v}_q} \end{array}} \right]\\ \frac{d}{{dt}}\left[ {\Delta \varphi _v^{ac}} \right] =& \left[ { - K_i^{vac}\ \ \ \ 0} \right]\left[ {\begin{array}{c} {\Delta v_d^c}\\ {\Delta v_q^c} \end{array}} \right] + \left[ {K_i^{vac}} \right]\left[ {\Delta v_d^*} \right]\\ \left[ {\begin{array}{c} {\Delta \dot{\varepsilon }}\\ {\Delta \dot{\varphi }_\varepsilon ^{pll}} \end{array}} \right] =& \left[ {\begin{array}{c} 0\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} 1\\ 0 \end{array}} \right]\left[ {\begin{array}{c} {\Delta \varepsilon }\\ {\Delta \varphi _\varepsilon ^{pll}} \end{array}} \right] + \left[ {\begin{array}{c} 0\\ 0 \end{array}\ \ \ \ \ \begin{array}{c} {\frac{{K_p^{pll}}}{{v_d^0}}}\\ {\frac{{K_i^{pll}}}{{v_d^0}}} \end{array}} \right]\left[ {\begin{array}{c} {\Delta v_d^c}\\ {\Delta v_q^c} \end{array}} \right]\end{align*} View Source\begin{align*} \left[ {\begin{array}{c} {\Delta v_{id}^c}\\ {\Delta v_{iq}^c} \end{array}} \right] =& \left[ {\begin{array}{c} { - K_p^i}\\ {\omega {L}_f} \end{array}\ \ \ \ \ \ \begin{array}{c} { - \omega {L}_f}\\ { - K_p^i} \end{array}} \right]\left[ {\begin{array}{c} {\Delta i_d^c}\\ {\Delta i_q^c} \end{array}} \right] + \left[ {\begin{array}{c} {\Delta \varphi _d^i}\\ {\Delta \varphi _q^i} \end{array}} \right] \\ & + \left[ {\begin{array}{c} {\Delta v_d^c}\\ {\Delta v_q^c} \end{array}} \right] + \left[ {\begin{array}{c} {K_p^i}\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} 0\\ {K_p^i} \end{array}} \right]\left[ {\begin{array}{c} {\Delta i_d^*}\\ {\Delta i_q^*} \end{array}} \right]\\ \left[ {\begin{array}{c} {\Delta \dot{\varphi }_d^i}\\ {\Delta \dot{\varphi }_q^i} \end{array}} \right] =& \left[ {\begin{array}{c} {K_i^i}\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} 0\\ {K_i^i} \end{array}} \right]\left[ {\begin{array}{c} {\Delta i_d^*}\\ {\Delta i_q^*} \end{array}} \right] + \left[ {\begin{array}{c} { - K_i^i}\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} 0\\ { - K_i^i} \end{array}} \right]\\ & \times \left[ {\begin{array}{c} {\Delta i_d^c}\\ {\Delta i_q^c} \end{array}} \right]\\ \left[ {\begin{array}{c} {\Delta \dot{V}_{dc}^2}\\ {\Delta \dot{\varphi }_v^{dc}} \end{array}} \right] =& \left[ {\begin{array}{c} {\frac{{2I_{pv}^0}}{{{C}_{dc}V_{dc}^0}}}\\ { - K_i^{vdc}} \end{array}\ \ \ \ \ \ \begin{array}{c} 0\\ 0 \end{array}} \right]\left[ {\begin{array}{c} {\Delta V_{dc}^2}\\ {\Delta \varphi _v^{dc}} \end{array}} \right] + \left[ {\begin{array}{c} {\frac{{2V_{dc}^0}}{{{C}_{dc}}}\ \ \ 0}\\ {\ \ \ \ 0\ \ \ {K}_{ivdc}} \end{array}} \right]\\ & \times \left[ {\begin{array}{c} {\Delta {I}_{pv}}\\ {\Delta V_{dc}^{*2}} \end{array}} \right] + \left[ {\begin{array}{c} {\frac{{ - 3i_d^0}}{{{C}_{dc}}}}\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} {\frac{{ - 3i_q^0}}{{{C}_{dc}}}}\\ 0 \end{array}} \right]\\ & + \ \left[ {\begin{array}{c} {\frac{{ - 3v_d^0}}{{{C}_{dc}}}}\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} {\frac{{ - 3v_q^0}}{{{C}_{dc}}}}\\ 0 \end{array}} \right]\left[ {\begin{array}{c} {\Delta {i}_d}\\ {\Delta {i}_q} \end{array}} \right] \\ & + \left[ {\begin{array}{c} {\frac{{ - 3i_d^0}}{{{C}_{dc}}}}\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} {\frac{{ - 3i_q^0}}{{{C}_{dc}}}}\\ 0 \end{array}} \right]\left[ {\begin{array}{c} {\Delta {v}_d}\\ {\Delta {v}_q} \end{array}} \right]\\ \frac{d}{{dt}}\left[ {\Delta \varphi _v^{ac}} \right] =& \left[ { - K_i^{vac}\ \ \ \ 0} \right]\left[ {\begin{array}{c} {\Delta v_d^c}\\ {\Delta v_q^c} \end{array}} \right] + \left[ {K_i^{vac}} \right]\left[ {\Delta v_d^*} \right]\\ \left[ {\begin{array}{c} {\Delta \dot{\varepsilon }}\\ {\Delta \dot{\varphi }_\varepsilon ^{pll}} \end{array}} \right] =& \left[ {\begin{array}{c} 0\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} 1\\ 0 \end{array}} \right]\left[ {\begin{array}{c} {\Delta \varepsilon }\\ {\Delta \varphi _\varepsilon ^{pll}} \end{array}} \right] + \left[ {\begin{array}{c} 0\\ 0 \end{array}\ \ \ \ \ \begin{array}{c} {\frac{{K_p^{pll}}}{{v_d^0}}}\\ {\frac{{K_i^{pll}}}{{v_d^0}}} \end{array}} \right]\left[ {\begin{array}{c} {\Delta v_d^c}\\ {\Delta v_q^c} \end{array}} \right]\end{align*}
VSC Compensator Design
\begin{align*} \left[ {\begin{array}{c} {\Delta {{\dot{\delta }}}_1}\\ {\Delta {{\dot{\delta }}}_2} \end{array}} \right] =& \left[ {\begin{array}{c} 0\\ { - \omega _v^2} \end{array}\ \ \ \ \ \begin{array}{c} 1\\ { - 2{\varepsilon }_v{\omega }_v} \end{array}} \right]\left[ {\begin{array}{c} {\Delta {\delta }_1}\\ {\Delta {\delta }_2} \end{array}} \right] + \left[ {\begin{array}{c} 0\\ {2{\varepsilon }_v{\omega }_v{K}_v} \end{array}} \right]\\ \left[ {\begin{array}{c} {\Delta {{\dot{\delta }}}_3}\\ {\Delta {{\dot{\delta }}}_4} \end{array}} \right] =& \left[ {\begin{array}{c} { - {\omega }_q}\\ 0 \end{array}\ \ \ \ \ \begin{array}{c} 0\\ { - {\omega }_d} \end{array}} \right]\left[ {\begin{array}{c} {\Delta {\delta }_3}\\ {\Delta {\delta }_4} \end{array}} \right] + \left[ {\begin{array}{c} 0\\ {{K}_d{\omega }_d} \end{array}\ \ \ \ \ \begin{array}{c} {{K}_q{\omega }_q}\\ 0 \end{array}} \right]\\ & \times \left[ {\begin{array}{c} {\Delta {v}_d}\\ {\Delta {v}_q} \end{array}} \right]\end{align*} View Source\begin{align*} \left[ {\begin{array}{c} {\Delta {{\dot{\delta }}}_1}\\ {\Delta {{\dot{\delta }}}_2} \end{array}} \right] =& \left[ {\begin{array}{c} 0\\ { - \omega _v^2} \end{array}\ \ \ \ \ \begin{array}{c} 1\\ { - 2{\varepsilon }_v{\omega }_v} \end{array}} \right]\left[ {\begin{array}{c} {\Delta {\delta }_1}\\ {\Delta {\delta }_2} \end{array}} \right] + \left[ {\begin{array}{c} 0\\ {2{\varepsilon }_v{\omega }_v{K}_v} \end{array}} \right]\\ \left[ {\begin{array}{c} {\Delta {{\dot{\delta }}}_3}\\ {\Delta {{\dot{\delta }}}_4} \end{array}} \right] =& \left[ {\begin{array}{c} { - {\omega }_q}\\ 0 \end{array}\ \ \ \ \ \begin{array}{c} 0\\ { - {\omega }_d} \end{array}} \right]\left[ {\begin{array}{c} {\Delta {\delta }_3}\\ {\Delta {\delta }_4} \end{array}} \right] + \left[ {\begin{array}{c} 0\\ {{K}_d{\omega }_d} \end{array}\ \ \ \ \ \begin{array}{c} {{K}_q{\omega }_q}\\ 0 \end{array}} \right]\\ & \times \left[ {\begin{array}{c} {\Delta {v}_d}\\ {\Delta {v}_q} \end{array}} \right]\end{align*}
Parallel CSCs DC and AC-Side Dynamics
\begin{align*} \frac{d}{{dt}}\left[ {\begin{array}{c} {\Delta {V}_{pv1}}\\ {\Delta {V}_{pv2}} \end{array}} \right] =& \left[ {\begin{array}{c} {\frac{{ - 1}}{{{C}_{pv1}}}}\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} 0\\ {\frac{{ - 1}}{{{C}_{pv2}}}} \end{array}} \right]\left[ {\begin{array}{c} {\Delta {I}_{dc1}}\\ {\Delta {I}_{dc2}} \end{array}} \right] \\ &+ \left[ {\begin{array}{c} {\frac{1}{{{C}_{pv1}}}}\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} 0\\ {\frac{1}{{{C}_{pv2}}}} \end{array}} \right]\left[ {\begin{array}{c} {\Delta {I}_{pv1}}\\ {\Delta {I}_{pv2}} \end{array}} \right]\\ \frac{d}{{dt}}\left[ {\begin{array}{c} {\Delta {I}_{dc1}}\\ {\Delta {I}_{dc2}} \end{array}} \right] = &\left[ {\begin{array}{c} {\frac{1}{{{L}_{dc1}}}}\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} 0\\ {\frac{1}{{{L}_{dc2}}}} \end{array}} \right]\left[ {\begin{array}{c} {\Delta {V}_{pv1}}\\ {\Delta {V}_{pv2}} \end{array}} \right] \\ & + \left[ {\begin{array}{c} {\frac{{ - 3{M}_{d1}}}{{2{L}_{dc1}}}}\\ {\frac{{ - 3{M}_{d2}}}{{2{L}_{dc2}}}} \end{array}\ \ \ \ \ \ \begin{array}{c} {\frac{{ - 3{M}_{q1}}}{{2{L}_{dc1}}}}\\ {\frac{{ - 3{M}_{q2}}}{{2{L}_{dc2}}}} \end{array}} \right]\left[ {\begin{array}{c} {\Delta {v}_{sd}}\\ {\Delta {v}_{sq}} \end{array}} \right] \\ & + \left[ {\begin{array}{c} {\frac{{ - 3{V}_{sd}}}{{2{L}_{dc1}}}}\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} {\frac{{ - 3{V}_{sq}}}{{2{L}_{dc1}}}}\\ 0 \end{array}} \right]\left[ {\begin{array}{c} {\Delta {m}_{d1}}\\ {\Delta {m}_{q1}} \end{array}} \right]\\ &+ \left[ {\begin{array}{c} 0\\ {\frac{{ - 3{V}_{sd}}}{{2{L}_{dc2}}}} \end{array}\ \ \ \ \ \ \begin{array}{c} 0\\ {\frac{{ - 3{V}_{sq}}}{{2{L}_{dc2}}}} \end{array}} \right]\left[ {\begin{array}{c} {\Delta {m}_{d2}}\\ {\Delta {m}_{q2}} \end{array}} \right]\\ \frac{d}{{dt}}\left[ {\begin{array}{c} {\Delta {v}_{sd}}\\ {\Delta {v}_{sq}} \end{array}} \right] =& \left[ {\begin{array}{c} {\frac{{{M}_{d1}}}{{2{C}_{s1}}}}\\ {\frac{{{M}_{q1}}}{{2{C}_{s1}}}} \end{array}\ \ \ \ \ \ \begin{array}{c} {\frac{{{M}_{d2}}}{{2{C}_{s2}}}}\\ {\frac{{{M}_{q2}}}{{2{C}_{s2}}}} \end{array}} \right]\left[ {\begin{array}{c} {\Delta {I}_{dc1}}\\ {\Delta {I}_{dc2}} \end{array}} \right] \\ & + \frac{1}{2}\left[ {\begin{array}{c} 0\\ { - {\omega }_1 - {\omega }_2} \end{array}\ \ \ \ \ \ \begin{array}{c} {{\omega }_1 + {\omega }_2}\\ 0 \end{array}} \right]\left[ {\begin{array}{c} {\Delta {v}_{sd}}\\ {\Delta {v}_{sq}} \end{array}} \right] \\ & + \left[ {\begin{array}{c} {\frac{{{I}_{dc1}}}{{2{C}_{s1}}}}\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} 0\\ {\frac{{{I}_{dc1}}}{{2{C}_{s1}}}} \end{array}} \right]\left[ {\begin{array}{c} {\Delta {d}_{d1}}\\ {\Delta {d}_{q1}} \end{array}} \right]\\ &+ \left[ {\begin{array}{c} {\frac{{{I}_{dc2}}}{{2{C}_{s2}}}}\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} 0\\ {\frac{{{I}_{dc2}}}{{2{C}_{s2}}}} \end{array}} \right]\left[ {\begin{array}{c} {\Delta {d}_{d2}}\\ {\Delta {d}_{q2}} \end{array}} \right]\end{align*} View Source\begin{align*} \frac{d}{{dt}}\left[ {\begin{array}{c} {\Delta {V}_{pv1}}\\ {\Delta {V}_{pv2}} \end{array}} \right] =& \left[ {\begin{array}{c} {\frac{{ - 1}}{{{C}_{pv1}}}}\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} 0\\ {\frac{{ - 1}}{{{C}_{pv2}}}} \end{array}} \right]\left[ {\begin{array}{c} {\Delta {I}_{dc1}}\\ {\Delta {I}_{dc2}} \end{array}} \right] \\ &+ \left[ {\begin{array}{c} {\frac{1}{{{C}_{pv1}}}}\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} 0\\ {\frac{1}{{{C}_{pv2}}}} \end{array}} \right]\left[ {\begin{array}{c} {\Delta {I}_{pv1}}\\ {\Delta {I}_{pv2}} \end{array}} \right]\\ \frac{d}{{dt}}\left[ {\begin{array}{c} {\Delta {I}_{dc1}}\\ {\Delta {I}_{dc2}} \end{array}} \right] = &\left[ {\begin{array}{c} {\frac{1}{{{L}_{dc1}}}}\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} 0\\ {\frac{1}{{{L}_{dc2}}}} \end{array}} \right]\left[ {\begin{array}{c} {\Delta {V}_{pv1}}\\ {\Delta {V}_{pv2}} \end{array}} \right] \\ & + \left[ {\begin{array}{c} {\frac{{ - 3{M}_{d1}}}{{2{L}_{dc1}}}}\\ {\frac{{ - 3{M}_{d2}}}{{2{L}_{dc2}}}} \end{array}\ \ \ \ \ \ \begin{array}{c} {\frac{{ - 3{M}_{q1}}}{{2{L}_{dc1}}}}\\ {\frac{{ - 3{M}_{q2}}}{{2{L}_{dc2}}}} \end{array}} \right]\left[ {\begin{array}{c} {\Delta {v}_{sd}}\\ {\Delta {v}_{sq}} \end{array}} \right] \\ & + \left[ {\begin{array}{c} {\frac{{ - 3{V}_{sd}}}{{2{L}_{dc1}}}}\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} {\frac{{ - 3{V}_{sq}}}{{2{L}_{dc1}}}}\\ 0 \end{array}} \right]\left[ {\begin{array}{c} {\Delta {m}_{d1}}\\ {\Delta {m}_{q1}} \end{array}} \right]\\ &+ \left[ {\begin{array}{c} 0\\ {\frac{{ - 3{V}_{sd}}}{{2{L}_{dc2}}}} \end{array}\ \ \ \ \ \ \begin{array}{c} 0\\ {\frac{{ - 3{V}_{sq}}}{{2{L}_{dc2}}}} \end{array}} \right]\left[ {\begin{array}{c} {\Delta {m}_{d2}}\\ {\Delta {m}_{q2}} \end{array}} \right]\\ \frac{d}{{dt}}\left[ {\begin{array}{c} {\Delta {v}_{sd}}\\ {\Delta {v}_{sq}} \end{array}} \right] =& \left[ {\begin{array}{c} {\frac{{{M}_{d1}}}{{2{C}_{s1}}}}\\ {\frac{{{M}_{q1}}}{{2{C}_{s1}}}} \end{array}\ \ \ \ \ \ \begin{array}{c} {\frac{{{M}_{d2}}}{{2{C}_{s2}}}}\\ {\frac{{{M}_{q2}}}{{2{C}_{s2}}}} \end{array}} \right]\left[ {\begin{array}{c} {\Delta {I}_{dc1}}\\ {\Delta {I}_{dc2}} \end{array}} \right] \\ & + \frac{1}{2}\left[ {\begin{array}{c} 0\\ { - {\omega }_1 - {\omega }_2} \end{array}\ \ \ \ \ \ \begin{array}{c} {{\omega }_1 + {\omega }_2}\\ 0 \end{array}} \right]\left[ {\begin{array}{c} {\Delta {v}_{sd}}\\ {\Delta {v}_{sq}} \end{array}} \right] \\ & + \left[ {\begin{array}{c} {\frac{{{I}_{dc1}}}{{2{C}_{s1}}}}\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} 0\\ {\frac{{{I}_{dc1}}}{{2{C}_{s1}}}} \end{array}} \right]\left[ {\begin{array}{c} {\Delta {d}_{d1}}\\ {\Delta {d}_{q1}} \end{array}} \right]\\ &+ \left[ {\begin{array}{c} {\frac{{{I}_{dc2}}}{{2{C}_{s2}}}}\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} 0\\ {\frac{{{I}_{dc2}}}{{2{C}_{s2}}}} \end{array}} \right]\left[ {\begin{array}{c} {\Delta {d}_{d2}}\\ {\Delta {d}_{q2}} \end{array}} \right]\end{align*}
CSC AC-DC Current, PCC Voltage and PLL Control
\begin{align*} \left[ {\begin{array}{c} {\Delta i_{wd}^c}\\ {\Delta i_{wq}^c} \end{array}} \right] =& \left[ {\begin{array}{c} {\Delta {\varphi }_{id}}\\ {\Delta {\varphi }_{iq}} \end{array}} \right] + \left[ {\begin{array}{c} {{K}_{pi}}\\ 0 \end{array}\ \ \ \ \ \begin{array}{c} 0\\ {{K}_{pi}} \end{array}} \right]\left[ {\begin{array}{c} {\Delta i_{sd}^*}\\ {\Delta i_{sq}^*} \end{array}} \right] \\ & + \left[ {\begin{array}{c} { - {K}_{pi}}\\ 0 \end{array}\ \ \ \ \ \begin{array}{c} 0\\ { - {K}_{pi}} \end{array}} \right]\left[ {\begin{array}{c} {\Delta i_{sd}^c}\\ {\Delta i_{sq}^c} \end{array}} \right]\left[ {\begin{array}{c} {\Delta {{\dot{\varphi }}}_{id}}\\ {\Delta {{\dot{\varphi }}}_{iq}} \end{array}} \right] \\ =& \left[ {\begin{array}{c} { - {K}_{ii}}\\ 0 \end{array}\ \ \ \ \ \begin{array}{c} 0\\ { - {K}_{ii}} \end{array}} \right]\left[ {\begin{array}{c} {\Delta i_{sd}^c}\\ {\Delta i_{sq}^c} \end{array}} \right] + \left[ {\begin{array}{c} {{K}_{ii}}\\ 0 \end{array}\ \ \ \ \ \begin{array}{c} 0\\ {{K}_{ii}} \end{array}} \right]\\ & \times \left[ {\begin{array}{c} {\Delta i_{sd}^*}\\ {\Delta i_{sq}^*} \end{array}} \right]\\ \frac{d}{{dt}}\left[ {\Delta \varphi _v^{ac}} \right] =& \left[ { - {K}_{ivac}\ \ \ \ 0} \right]\left[ {\begin{array}{c} {\Delta v_{sd}^c}\\ {\Delta v_{sq}^c} \end{array}} \right] + \left[ {{K}_{ivac}} \right]\left[ {\Delta v_{sd}^*} \right]\\ \left[ {\begin{array}{c} {\Delta \dot{\delta }}\\ {\Delta {{\dot{\varphi }}}_\delta } \end{array}} \right] =& \left[ {\begin{array}{c} 0\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} 1\\ 0 \end{array}} \right]\left[ {\begin{array}{c} {\Delta \delta }\\ {\Delta {\varphi }_\delta } \end{array}} \right] + \left[ {\begin{array}{c} 0\\ 0 \end{array}\ \ \ \ \ \begin{array}{c} {\frac{{{K}_{p\delta }}}{{v_{sd}^0}}}\\ {\frac{{{K}_{i\delta }}}{{v_{sd}^0}}} \end{array}} \right]\left[ {\begin{array}{c} {\Delta v_{sd}^c}\\ {\Delta v_{sq}^c} \end{array}} \right]\end{align*} View Source\begin{align*} \left[ {\begin{array}{c} {\Delta i_{wd}^c}\\ {\Delta i_{wq}^c} \end{array}} \right] =& \left[ {\begin{array}{c} {\Delta {\varphi }_{id}}\\ {\Delta {\varphi }_{iq}} \end{array}} \right] + \left[ {\begin{array}{c} {{K}_{pi}}\\ 0 \end{array}\ \ \ \ \ \begin{array}{c} 0\\ {{K}_{pi}} \end{array}} \right]\left[ {\begin{array}{c} {\Delta i_{sd}^*}\\ {\Delta i_{sq}^*} \end{array}} \right] \\ & + \left[ {\begin{array}{c} { - {K}_{pi}}\\ 0 \end{array}\ \ \ \ \ \begin{array}{c} 0\\ { - {K}_{pi}} \end{array}} \right]\left[ {\begin{array}{c} {\Delta i_{sd}^c}\\ {\Delta i_{sq}^c} \end{array}} \right]\left[ {\begin{array}{c} {\Delta {{\dot{\varphi }}}_{id}}\\ {\Delta {{\dot{\varphi }}}_{iq}} \end{array}} \right] \\ =& \left[ {\begin{array}{c} { - {K}_{ii}}\\ 0 \end{array}\ \ \ \ \ \begin{array}{c} 0\\ { - {K}_{ii}} \end{array}} \right]\left[ {\begin{array}{c} {\Delta i_{sd}^c}\\ {\Delta i_{sq}^c} \end{array}} \right] + \left[ {\begin{array}{c} {{K}_{ii}}\\ 0 \end{array}\ \ \ \ \ \begin{array}{c} 0\\ {{K}_{ii}} \end{array}} \right]\\ & \times \left[ {\begin{array}{c} {\Delta i_{sd}^*}\\ {\Delta i_{sq}^*} \end{array}} \right]\\ \frac{d}{{dt}}\left[ {\Delta \varphi _v^{ac}} \right] =& \left[ { - {K}_{ivac}\ \ \ \ 0} \right]\left[ {\begin{array}{c} {\Delta v_{sd}^c}\\ {\Delta v_{sq}^c} \end{array}} \right] + \left[ {{K}_{ivac}} \right]\left[ {\Delta v_{sd}^*} \right]\\ \left[ {\begin{array}{c} {\Delta \dot{\delta }}\\ {\Delta {{\dot{\varphi }}}_\delta } \end{array}} \right] =& \left[ {\begin{array}{c} 0\\ 0 \end{array}\ \ \ \ \ \ \begin{array}{c} 1\\ 0 \end{array}} \right]\left[ {\begin{array}{c} {\Delta \delta }\\ {\Delta {\varphi }_\delta } \end{array}} \right] + \left[ {\begin{array}{c} 0\\ 0 \end{array}\ \ \ \ \ \begin{array}{c} {\frac{{{K}_{p\delta }}}{{v_{sd}^0}}}\\ {\frac{{{K}_{i\delta }}}{{v_{sd}^0}}} \end{array}} \right]\left[ {\begin{array}{c} {\Delta v_{sd}^c}\\ {\Delta v_{sq}^c} \end{array}} \right]\end{align*}
CSC Compensator Design
\begin{align*} \left[ {\begin{array}{c} {\Delta {{\dot{\delta }}}_{c1}}\\ {\Delta {{\dot{\delta }}}_{c2}} \end{array}} \right] =& \left[ {\begin{array}{c} 0\\ { - \omega _c^2} \end{array}\ \ \ \ \ \begin{array}{c} 1\\ { - 2{\varepsilon }_c{\omega }_c} \end{array}} \right]\left[ {\begin{array}{c} {\Delta {\delta }_{c1}}\\ {\Delta {\delta }_{c2}} \end{array}} \right] + \left[ {\begin{array}{c} 0\\ {2{\varepsilon }_c{\omega }_c{K}_c} \end{array}} \right]\\ \left[ {\begin{array}{c} {\Delta {{\dot{\delta }}}_{c3}}\\ {\Delta {{\dot{\delta }}}_{c4}} \end{array}} \right] =& \left[ {\begin{array}{c} { - {\omega }_{qq}}\\ 0 \end{array}\ \ \ \ \ \begin{array}{c} 0\\ { - {\omega }_{dd}} \end{array}} \right]\left[ {\begin{array}{c} {\Delta {\delta }_{c3}}\\ {\Delta {\delta }_{c4}} \end{array}} \right] \\ & + \left[ {\begin{array}{c} 0\\ {{K}_{dd}{\omega }_{dd}} \end{array}\ \ \ \ \ \begin{array}{c} {{K}_{qq}{\omega }_{qq}}\\ 0 \end{array}} \right]\left[ {\begin{array}{c} {\Delta {v}_{sd}}\\ {\Delta {v}_{sq}} \end{array}} \right]\end{align*} View Source\begin{align*} \left[ {\begin{array}{c} {\Delta {{\dot{\delta }}}_{c1}}\\ {\Delta {{\dot{\delta }}}_{c2}} \end{array}} \right] =& \left[ {\begin{array}{c} 0\\ { - \omega _c^2} \end{array}\ \ \ \ \ \begin{array}{c} 1\\ { - 2{\varepsilon }_c{\omega }_c} \end{array}} \right]\left[ {\begin{array}{c} {\Delta {\delta }_{c1}}\\ {\Delta {\delta }_{c2}} \end{array}} \right] + \left[ {\begin{array}{c} 0\\ {2{\varepsilon }_c{\omega }_c{K}_c} \end{array}} \right]\\ \left[ {\begin{array}{c} {\Delta {{\dot{\delta }}}_{c3}}\\ {\Delta {{\dot{\delta }}}_{c4}} \end{array}} \right] =& \left[ {\begin{array}{c} { - {\omega }_{qq}}\\ 0 \end{array}\ \ \ \ \ \begin{array}{c} 0\\ { - {\omega }_{dd}} \end{array}} \right]\left[ {\begin{array}{c} {\Delta {\delta }_{c3}}\\ {\Delta {\delta }_{c4}} \end{array}} \right] \\ & + \left[ {\begin{array}{c} 0\\ {{K}_{dd}{\omega }_{dd}} \end{array}\ \ \ \ \ \begin{array}{c} {{K}_{qq}{\omega }_{qq}}\\ 0 \end{array}} \right]\left[ {\begin{array}{c} {\Delta {v}_{sd}}\\ {\Delta {v}_{sq}} \end{array}} \right]\end{align*}