Generative Perturbation Network for Universal Adversarial Attacks on Brain-Computer Interfaces | IEEE Journals & Magazine | IEEE Xplore

Generative Perturbation Network for Universal Adversarial Attacks on Brain-Computer Interfaces


The Generative Perturbation Network (GPN) can be utilized for signal-agnostic and signal-specific perturbations. A fixed noise and training images are supplied to the sam...

Abstract:

Deep neural networks (DNNs) have successfully classified EEG-based brain-computer interface (BCI) systems. However, recent studies have found that well-designed input sam...Show More

Abstract:

Deep neural networks (DNNs) have successfully classified EEG-based brain-computer interface (BCI) systems. However, recent studies have found that well-designed input samples, known as adversarial examples, can easily fool well-performed deep neural networks model with minor perturbations undetectable by a human. This paper proposes an efficient generative model named generative perturbation network (GPN), which can generate universal adversarial examples with the same architecture for non-targeted and targeted attacks. Furthermore, the proposed model can be efficiently extended to conditionally or simultaneously generate perturbations for various targets and victim models. Our experimental evaluation demonstrates that perturbations generated by the proposed model outperform previous approaches for crafting signal-agnostic perturbations. We demonstrate that the extended network for signal-specific methods also significantly reduces generation time while performing similarly. The transferability across classification networks of the proposed method is superior to the other methods, which shows our perturbations' high level of generality.
The Generative Perturbation Network (GPN) can be utilized for signal-agnostic and signal-specific perturbations. A fixed noise and training images are supplied to the sam...
Published in: IEEE Journal of Biomedical and Health Informatics ( Volume: 27, Issue: 11, November 2023)
Page(s): 5622 - 5633
Date of Publication: 09 August 2023

ISSN Information:

PubMed ID: 37556336

Funding Agency:


References

References is not available for this document.