Abstract:
Autonomous mobile robots enable increased flexibility of manufacturing systems. The design and operating strategy of such a fleet of robots requires careful consideration...Show MoreMetadata
Abstract:
Autonomous mobile robots enable increased flexibility of manufacturing systems. The design and operating strategy of such a fleet of robots requires careful consideration of both fixed and operational costs. In this paper, a Monte-Carlo Tree Search (MCTS)-based metaheuristic is developed that guides a Branch & Bound (B&B) algorithm to find the globally optimal solution to the Fleet Size and Mix Vehicle Routing Problem with Time Windows (FSMVRPTW). The metaheuristic and exact algorithms are implemented in a parallel hybrid optimization algorithm where the metaheuristic rapidly finds feasible solutions that provide candidate upper bounds for the B&B algorithm. The MCTS additionally provides a candidate fleet composition to initiate the B&B search. Experiments show that the proposed approach results in significant improvements in computation time and convergence to the optimal solution.
Published in: 2023 IEEE Intelligent Vehicles Symposium (IV)
Date of Conference: 04-07 June 2023
Date Added to IEEE Xplore: 27 July 2023
ISBN Information: