Loading [a11y]/accessibility-menu.js
Model-Free Game-Theoretic Feedback optimization | IEEE Conference Publication | IEEE Xplore

Model-Free Game-Theoretic Feedback optimization


Abstract:

This paper extends recent work in feedback-based, game-theoretic optimization. We first identify limitations of existing approaches to this problem, often requiring a pri...Show More

Abstract:

This paper extends recent work in feedback-based, game-theoretic optimization. We first identify limitations of existing approaches to this problem, often requiring a priori knowledge to construct a nominal sensitivity model. Leveraging zero-order optimization techniques inspired by stochastic perturbation, we develop a model-free algorithm that allows agents to estimate these sensitivities during runtime, rather than a priori. We outline the convergence properties of this algorithm as a forward-backward operator-splitting technique. Finally, we compare this model-free algorithm’s performance to existing approaches, outlining its benefits and drawbacks.
Date of Conference: 13-16 June 2023
Date Added to IEEE Xplore: 17 July 2023
ISBN Information:
Conference Location: Bucharest, Romania
References is not available for this document.

Select All
1.
J. S. Shamma, “Game theory, learning, and control systems,” National Science Review, vol. 7, no. 7, pp. 1118–1119, Nov. 2019.
2.
J. R. Marden and J. S. Shamma, “Chapter 16 - game theory and distributed control,” in ser. Handbook of Game Theory with Economic Applications, H. P. Young and S. Zamir, Eds., vol. 4, Elsevier, 2015, pp. 861–899.
3.
G. Belgioioso, D. Liao-McPherson, M. H. de Badyn, S. Bolognani, J. Lygeros, and F. Dörfler, Sampleddata online feedback equilibrium seeking: Stability and tracking, 2021.
4.
A. R. Romano and L. Pavel, “Dynamic NE seeking for multi-integrator networked agents with disturbance rejection,” IEEE Trans. Control Net. Syst., vol. 7, no. 1, pp. 129–139, Mar. 2020.
5.
S. Givigi and H. Schwartz, “A game theoretic approach to swarm robotics,” Appl. Bionics and Biomechanics, vol. 3, 2006.
6.
Y. Zhang and M. Guizani. CRC Press, 2019.
7.
A. B. MacKenzie and L. A. DaSilva, Synthesis Lectures on Communications. Springer, 2006.
8.
A. Agarwal, J. W. Simpson-Porco, and L. Pavel, “Game-theoretic feedback-based optimization,” IFAC-PapersOnLine, vol. 55, no. 13, pp. 174–179, 2022, IFAC NecSys Workshop.
9.
E. Ismagilova, L. Hughes, N. Rana, and Y. Dwivedi, “Security, privacy and risks within smart cities: Literature review and development of a smart city interaction framework,” Information Sys. Frontiers, Jul. 2020.
10.
A. Bernstein, E. Dall’Anese, and A. Simonetto, “Online primal-dual methods with measurement feedback for time-varying convex optimization,” IEEE Trans. Signal Proc., vol. 67, no. 8, pp. 1978–1991, Apr. 2019.
11.
M. Colombino, J. W. Simpson-Porco, and A. Bernstein, “Towards robustness guarantees for feedback-based optimization,” in Proc. IEEE CDC, 2019, pp. 6207–6214.
12.
P. Yi and L. Pavel, “An operator splitting approach for distributed generalized Nash equilibria computation,” Automatica, vol. 102, pp. 111–121, 2019.
13.
D. Gadjov and L. Pavel, “A passivity-based approach to Nash equilibrium seeking over networks,” IEEE Trans. Autom. Control, vol. 64, no. 3, pp. 1077–1092, 2019.
14.
A. Hauswirth, S. Bolognani, G. Hug, and F. Dörfler, “Optimization algorithms as robust feedback controllers,” Unpublished, 2021. arXiv: 2103.11329 [math.OC].
15.
M. Colombino, E. Dall’Anese, and A. Bernstein, “Online optimization as a feedback controller: Stability and tracking,” IEEE Trans. Control Net. Syst., vol. 7, no. 1, pp. 422–432, 2020.
16.
L. S. P. Lawrence, J. W. Simpson-Porco, and E. Mallada, “Linear-convex optimal steady-state control,” IEEE Trans. Autom. Control, vol. 66, no. 11, pp. 5377–5384, 2021.
17.
E. Dall’Anese and A. Simonetto, “Optimal power flow pursuit,” IEEE Trans. Smart Grid, vol. 9, no. 2, pp. 942–952, 2018.
18.
A. Hauswirth, S. Bolognani, G. Hug, and F. Dörfler, “Projected gradient descent on riemannian manifolds with applications to online power system optimization,” in Allerton Conf on Comm, Ctrl & Comp, 2016, pp. 225–232.
19.
Y. Chen, A. Bernstein, A. Devraj, and S. Meyn, Model-free primal-dual methods for network optimization with application to real-time optimal power flow, 2019.
20.
D. Shirodkar and S. P. Meyn, “Quasi stochastic approximation,” Proceedings of the 2011 American Control Conference, pp. 2429–2435, 2011.
21.
J. Kiefer and J. Wolfowitz, “Stochastic estimation of the maximum of a regression function,” SIAM Journal on Optimization, vol. 23, no. 3, pp. 462–466, 1952.
22.
J. C. Spall, “A one-measurement form of simultaneous perturbation stochastic approximation,” Automatica, vol. 33, no. 1, pp. 109–112, 1997, ISSN: 0005-1098.
23.
J. C. Spall, “Implementation of the simultaneous perturbation algorithm for stochastic optimization,” taes, vol. 34, no. 3, pp. 817–823, 1998.
24.
S. Bhatnagar, M. C. Fu, S. I. Marcus, and I.-J. Wang, “Two-timescale simultaneous perturbation stochastic approximation using deterministic perturbation sequences,” vol. 13, no. 2, pp. 180–209, Apr. 2003, ISSN: 1049-3301. DOI: 10.1145/858481.858486. [Online]. Available: https://doi.org/10.1145/858481.858486
25.
P. L. A, S. Bhatnagar, N. Bhavsar, M. Fu, and S. I. Marcus, Random directions stochastic approximation with deterministic perturbations, 2018. DOI: 10.48550/ARXIV.1808.02871.
26.
Z. He, S. Bolognani, J. He, F. Dörfler, and X. Guan, Model-free nonlinear feedback optimization, 2022. DOI: 10.48550/ARXIV.2201.02395.
27.
D. Hajinezhad, M. Hong, and A. Garcia, Zeroth order nonconvex multi-agent optimization over networks, 2017. DOI: 10.48550/ARXIV.1710.09997.
28.
J. N. Webb, “Game theory, Decisions, interaction and evolution,” in New York, USA : Springer, 2007, ch. 4, sec. 1, p. 62.
29.
F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementary Problems. Springer Science & Business Media, 2007.
30.
H. Yin, U. V. Shanbhag, and P. G. Mehta, “Nash equilibrium problems with scaled congestion costs and shared constraints,” IEEE Trans. Autom. Control, vol. 56, no. 7, pp. 1702–1708, 2011.

Contact IEEE to Subscribe

References

References is not available for this document.