Abstract:
Social media use has transformed communication and made social interaction more accessible. Public microblogs allow people to share and access news through existing and s...Show MoreMetadata
Abstract:
Social media use has transformed communication and made social interaction more accessible. Public microblogs allow people to share and access news through existing and social-media-created social connections and access to public news sources. These benefits also create opportunities for the spread of false information. False information online can mislead people, decrease the benefits derived from social media, and reduce trust in genuine news. We divide false information into two categories: unintentional false information, also known as misinformation; and intentionally false information, also known as disinformation and fake news. Given the increasing prevalence of misinformation, it is imperative to address its dissemination on social media platforms. This survey focuses on six key aspects related to misinformation: 1) clarify the definition of misinformation to differentiate it from intentional forms of false information; 2) categorize proposed approaches to manage misinformation into three types: detection, verification, and mitigation; 3) review the platforms and languages for which these techniques have been proposed and tested; 4) describe the specific features that are considered in each category; 5) compare public datasets created to address misinformation and categorize into prelabeled content-only datasets and those including users and their connections; and 6) survey fact-checking websites that can be used to verify the accuracy of information. This survey offers a comprehensive and unprecedented review of misinformation, integrating various methodological approaches, datasets, and content-, user-, and network-based approaches, which will undoubtedly benefit future research in this field.
Published in: IEEE Transactions on Computational Social Systems ( Volume: 11, Issue: 4, August 2024)