Abstract:
This paper investigates the problem of age of information (AoI) aware radio resource management for a platooning system. Multiple autonomous platoons exploit the cellular...Show MoreMetadata
Abstract:
This paper investigates the problem of age of information (AoI) aware radio resource management for a platooning system. Multiple autonomous platoons exploit the cellular wireless vehicle-to-everything (C-V2X) communication technology to disseminate the cooperative awareness messages (CAMs) to their followers while ensuring timely delivery of safety-critical messages to the Road-Side Unit (RSU). To lower the computational load at the RSU and cope with the challenges of dynamic channel conditions, we exploit a distributed resource allocation framework based on multi-agent reinforcement learning (MARL), where each platoon leader (PL) acts as an agent and interacts with the environment to learn its optimal policy. Motivated by the existing literature in RL, we propose two novel MARL frameworks based on the multi-agent deep deterministic policy gradient (MADDPG), named Modified MADDPG, and Modified MADDPG with task decomposition. Both algorithms train two critics with the following goals: A global critic which estimates the global expected reward and motivates the agents toward a cooperating behavior and an exclusive local critic for each agent that estimates the local individual reward. Furthermore, based on the tasks each agent has to accomplish, in the second algorithm, the holistic individual reward of each agent is decomposed into multiple sub-reward functions where task-wise value functions are learned separately. Numerical results indicate our proposed algorithms' effectiveness compared with other contemporary RL frameworks, e.g., federated reinforcement learning (FRL) in terms of AoI performance and CAM message transmission probability.
Published in: IEEE Transactions on Vehicular Technology ( Volume: 72, Issue: 8, August 2023)