0 seconds of 0 secondsVolume 90%
Press shift question mark to access a list of keyboard shortcuts
Keyboard Shortcuts
Play/PauseSPACE
Increase Volume↑
Decrease Volume↓
Seek Forward→
Seek Backward←
Captions On/Offc
Fullscreen/Exit Fullscreenf
Mute/Unmutem
Seek %0-9
Live
00:00
00:00
00:00
The video presents the Multi-user Mixed Reality Human-Robot Interface for Teleoperation in Hazardous Environments developed at CERN. The sections show the functionalities...
Abstract:
In hazardous environments, where conditions present risks for humans, the maintenance and interventions are often done with teleoperated remote systems or mobile robotic ...Show MoreMetadata
Abstract:
In hazardous environments, where conditions present risks for humans, the maintenance and interventions are often done with teleoperated remote systems or mobile robotic manipulators to avoid human exposure to dangers. The increasing need for safe and efficient teleoperation requires advanced environmental awareness and collision avoidance. The up-to-date screen-based 2D or 3D interfaces do not fully allow the operator to immerse in the controlled scenario. This problem can be addressed with the emerging Mixed Reality (MR) technologies with Head-Mounted Devices (HMDs) that offer stereoscopic immersion and interaction with virtual objects. Such human-robot interfaces have not yet been demonstrated in telerobotic interventions in particle physics accelerators. Moreover, the operations often require a few experts to collaborate, which increases the system complexity and requires sharing an Augmented Reality (AR) workspace. The multi-user mobile telerobotics in hazardous environments with shared control in the AR has not yet been approached in the state-of-the-art. In this work, the developed MR human-robot interface using the AR HMD is presented. The interface adapts to the constrained wireless networks in particle accelerator facilities and provides reliable high-precision interaction and specialized visualization. The multimodal operation uses hands, eyes and user motion tracking, and voice recognition for control, as well as offers video, 3D point cloud and audio feedback from the robot. Multiple experts can collaborate in the AR workspace locally or remotely, and share or monitor the robot’s control. Ten operators tested the interface in intervention scenarios in the European Organization for Nuclear Research (CERN) with complete network characterization and measurements to conclude if operational requirements were met and if the network architecture could support single and multi-user communication load. The interface system has proved to be operationally ready at...
0 seconds of 0 secondsVolume 90%
Press shift question mark to access a list of keyboard shortcuts
Keyboard Shortcuts
Play/PauseSPACE
Increase Volume↑
Decrease Volume↓
Seek Forward→
Seek Backward←
Captions On/Offc
Fullscreen/Exit Fullscreenf
Mute/Unmutem
Seek %0-9
Live
00:00
00:00
00:00
The video presents the Multi-user Mixed Reality Human-Robot Interface for Teleoperation in Hazardous Environments developed at CERN. The sections show the functionalities...
Published in: IEEE Access ( Volume: 11)