Loading [MathJax]/extensions/MathMenu.js
DesnowFormer: an effective transformer-based image desnowing network | IEEE Conference Publication | IEEE Xplore

DesnowFormer: an effective transformer-based image desnowing network


Abstract:

Single image desnowing is an important and challenge task for lots of computer vision applications, such as visual tracking and video surveillance. Although existing deep...Show More

Abstract:

Single image desnowing is an important and challenge task for lots of computer vision applications, such as visual tracking and video surveillance. Although existing deep learning-based methods have achieved promising results, most of them rely on the local deep features and neglect global relationship information between the local regions. Therefore, inevitably leading to over-smooth or detail loss results. To solve this issue, we design a UNet-based end-to-end architecture for image desnowing. Specially, to better characterize global information and preserve image detail, we combine Window-based Self-Attention (WSA) transformer block with Residue Spatial Attention (RSA) to build basic unit of our network. Besides, to protect the structure of the image effectively, we also introduce a Residue Channel (RC) loss to guide high-quality image restoration. Extensive experimental results on both synthetic and real-world datasets demonstrate that the proposed model achieves new state-of-the-art results.
Date of Conference: 13-16 December 2022
Date Added to IEEE Xplore: 16 January 2023
ISBN Information:

ISSN Information:

Conference Location: Suzhou, China

Contact IEEE to Subscribe

References

References is not available for this document.