Introduction
In a conventional supply chain, the progression of labor and products includes obtaining and securing unrefined components and parts, planning and creating an item, assessing the interest, orchestrating sale channels, and afterward giving clients perceivability into their orders. In contrast, the digital supply chain gives essentially greater perceivability to the functions of the chain. It is the most common way of incorporating and applying progressed advanced innovations into supply chain activities, from obtainment information, and stock administration to transportation and conveyance. For example, one can get updates on the location of the cargo by utilizing Bluetooth Low Energy resources even if the cargo is in transit. A definitive objective of the digital transformation of the supply chain is to empower experiences for more prominent effectiveness and work with more prominent benefits. Organizations with SCDT can more readily move their assets, people, resources, and stock to where they are required at some random opportunity to diminish costs by answering proactively transport and production threats. The likely settlements of a completely acknowledged SCDT contain saving in various sections, including money, time, and money. Digitizationin the supply chain enables the organization’s preparation, obtaining, and strategies groups to team up, mechanize and influence examination. The few major benefits of the supply chain digital transformation are displayed in Figure 1.
MADM is the technique of taking preference decisions like selection, assessment prioritization, etc., in the presented alternatives which are described by generally multiple different attributes. The MADM issues vary in various areas and the MADM technique is a significant procedure to cope with intricate and tricky data in genuine life problems. To display such sort of intricate and tricky information Zadeh [1] propounded a mathematical structure and named it FS in 1965. FS modified the crisp theory by enlarging the range from a two-point set
When in MADM issues if the information contains the
Usually, the LT set of 7 terms is identified as
Preliminaries
In this Section, we are going to revise the conception of BCFS, its properties, and the conception of the LT set. Further,
Definition 1[30]:
The structure of the BCFS on \begin{equation*} {A_{BCFS}}= \big \{{\big ({\mathsf{x}},\big ({{\mu _{A_{BCFS}}^{P}} \big ({\mathsf{x}}}\big), {\mu _{A_{BCFS}}^{N}} \big ({\mathsf{x}}}\big)\big)\big)~|~{\mathsf{x}} \in {\mathfrak {X}_{\mathcal {U}}} \big \}\tag{1}\end{equation*}
Definition 2[31]:
The score value (SV) and accuracy value (AV) for any BCFN \begin{align*} \mathcal {S}\left ({{A_{BCFS}}}\right)=&\frac {1}{4}\left ({2+{\mu _{A_{BCFS}}^{RP}} \!+\! {\mu _{A_{BCFS}}^{IP}} \!+\! {\mu _{A_{BCFS}}^{RN}} \!+\! {\mu _{A_{BCFS}}^{IN}}}\right), \\&\mathcal {S}\left ({{A_{BCFS}}}\right) \in \left [{0,1}\right]\tag{2}\\ \mathcal {H}\left ({{A_{BCFS}}}\right)=&\frac {{\mu _{A_{BCFS}}^{RP}} \!+\! {\mu _{A_{BCFS}}^{IP}} \!+\! {\mu _{A_{BCFS}}^{RN}} \!+\! {\mu _{A_{BCFS}}^{IN}}}{4}, \\&\mathcal {H}\left ({{A_{BCFS}}}\right) \in \left [{0,1}\right]\tag{3}\end{align*}
Definition 3[31]:
For two BCFNs
as shown in the equation at the bottom of the next page.
\begin{align*}&\hspace {-2pc}{A_{BCFS-1}}{\oplus }{A_{BCFS-2}} \\=&\left ({\begin{matrix}{\mu _{A_{BCFS-1}}^{RP}}+{\mu _{A_{BCFS-2}}^{RP}}-{\mu _{A_{BCFS-1}}^{RP}}{\mu _{A_{BCFS-2}}^{RP}}\\ +\, {\iota }\left ({{\mu _{A_{BCFS-1}}^{IP}}+{\mu _{A_{BCFS-2}}^{IP}}-{\mu _{A_{BCFS-1}}^{IP}}{\mu _{A_{BCFS-2}}^{IP}}}\right),\\ -\,\left ({{\mu _{A_{BCFS-1}}^{RN}}{\mu _{A_{BCFS-2}}^{RN}}}\right)+{\iota }\left ({-\left ({{\mu _{A_{BCFS-1}}^{IN}} {\mu _{A_{BCFS-2}}^{IN}}}\right)}\right) \end{matrix}}\right)\end{align*} View Source\begin{align*}&\hspace {-2pc}{A_{BCFS-1}}{\oplus }{A_{BCFS-2}} \\=&\left ({\begin{matrix}{\mu _{A_{BCFS-1}}^{RP}}+{\mu _{A_{BCFS-2}}^{RP}}-{\mu _{A_{BCFS-1}}^{RP}}{\mu _{A_{BCFS-2}}^{RP}}\\ +\, {\iota }\left ({{\mu _{A_{BCFS-1}}^{IP}}+{\mu _{A_{BCFS-2}}^{IP}}-{\mu _{A_{BCFS-1}}^{IP}}{\mu _{A_{BCFS-2}}^{IP}}}\right),\\ -\,\left ({{\mu _{A_{BCFS-1}}^{RN}}{\mu _{A_{BCFS-2}}^{RN}}}\right)+{\iota }\left ({-\left ({{\mu _{A_{BCFS-1}}^{IN}} {\mu _{A_{BCFS-2}}^{IN}}}\right)}\right) \end{matrix}}\right)\end{align*}
\begin{align*}&\hspace {-2pc}{A_{BCFS-1}}{\otimes }{A_{BCFS-2}} \\=&\left ({\begin{matrix} {\mu _{A_{BCFS-1}}^{RP}}{\mu _{A_{BCFS-2}}^{RP}}+{\iota }{\mu _{A_{BCFS-1}}^{IP}}{\mu _{A_{BCFS-2}}^{IP}},\\[3pt] {\mu _{A_{BCFS-1}}^{RN}}+{\mu _{A_{BCFS-2}}^{RN}}+{\mu _{A_{BCFS-1}}^{RN}}{\mu _{A_{BCFS-2}}^{RN}}\\ {\iota }\left ({{\mu _{A_{BCFS-1}}^{IN}}+{\mu _{A_{BCFS-2}}^{IN}}+{\mu _{A_{BCFS-1}}^{IN}}{\mu _{A_{BCFS-2}}^{IN}}}\right) \end{matrix}}\right)\end{align*} View Source\begin{align*}&\hspace {-2pc}{A_{BCFS-1}}{\otimes }{A_{BCFS-2}} \\=&\left ({\begin{matrix} {\mu _{A_{BCFS-1}}^{RP}}{\mu _{A_{BCFS-2}}^{RP}}+{\iota }{\mu _{A_{BCFS-1}}^{IP}}{\mu _{A_{BCFS-2}}^{IP}},\\[3pt] {\mu _{A_{BCFS-1}}^{RN}}+{\mu _{A_{BCFS-2}}^{RN}}+{\mu _{A_{BCFS-1}}^{RN}}{\mu _{A_{BCFS-2}}^{RN}}\\ {\iota }\left ({{\mu _{A_{BCFS-1}}^{IN}}+{\mu _{A_{BCFS-2}}^{IN}}+{\mu _{A_{BCFS-1}}^{IN}}{\mu _{A_{BCFS-2}}^{IN}}}\right) \end{matrix}}\right)\end{align*}
\begin{align*}&\hspace {-2pc}{\psi }{A_{BCFS-1}}\\=&\left ({\begin{matrix} 1\!-\!{\left ({1\!-\!{\mu _{A_{BCFS-1}}^{RP}}}\right)^{\psi }}\!+\!{\iota } \left ({1\!-\!{\left ({1\!-\!{\mu _{A_{BCFS-1}}^{IP}}}\right)^{\psi }}}\right),\\ -\,{\left |{{\mu _{A_{BCFS-1}}^{RN}}}\right |^{\psi }}\!+\!{\iota }\left ({-{\left |{{\mu _{A_{BCFS-1}}^{IN}}}\right |^{\psi }}}\right) \end{matrix}}\right)\end{align*} View Source\begin{align*}&\hspace {-2pc}{\psi }{A_{BCFS-1}}\\=&\left ({\begin{matrix} 1\!-\!{\left ({1\!-\!{\mu _{A_{BCFS-1}}^{RP}}}\right)^{\psi }}\!+\!{\iota } \left ({1\!-\!{\left ({1\!-\!{\mu _{A_{BCFS-1}}^{IP}}}\right)^{\psi }}}\right),\\ -\,{\left |{{\mu _{A_{BCFS-1}}^{RN}}}\right |^{\psi }}\!+\!{\iota }\left ({-{\left |{{\mu _{A_{BCFS-1}}^{IN}}}\right |^{\psi }}}\right) \end{matrix}}\right)\end{align*}
\begin{align*}&\hspace {-2pc}{A_{BCFS-1}^{\psi }} \\=&\left ({\!\!\begin{matrix} {\left ({{\mu _{A_{BCFS-1}}^{RP}}}\right)^{\psi }}\!+\!{\iota }{\left ({\!{\mu _{A_{BCFS-1}}^{IP}}\!}\right)^{\psi }},\\ -\,1\!+\!{\left ({\!1\!+\!{\mu _{A_{BCFS-1}}^{RN}}\!}\right)^{\psi }}\!+\!{\iota } \left ({\!-1\!+\!{\left ({\!1\!+\!{\mu _{A_{BCFS-1}}^{IN}}\!}\right)^{\psi }}\!}\right) \end{matrix}\!\!}\right)\end{align*} View Source\begin{align*}&\hspace {-2pc}{A_{BCFS-1}^{\psi }} \\=&\left ({\!\!\begin{matrix} {\left ({{\mu _{A_{BCFS-1}}^{RP}}}\right)^{\psi }}\!+\!{\iota }{\left ({\!{\mu _{A_{BCFS-1}}^{IP}}\!}\right)^{\psi }},\\ -\,1\!+\!{\left ({\!1\!+\!{\mu _{A_{BCFS-1}}^{RN}}\!}\right)^{\psi }}\!+\!{\iota } \left ({\!-1\!+\!{\left ({\!1\!+\!{\mu _{A_{BCFS-1}}^{IN}}\!}\right)^{\psi }}\!}\right) \end{matrix}\!\!}\right)\end{align*}
Definition 4[35]:
A set
The ordered set
iff{\dot {\acute {\text {S}}}_{\gamma }} < {\dot {\acute {\text {S}}}_{\varepsilon }} ,{\gamma } < {\varepsilon } Negation operator:
such thatNeg\left ({{\dot {\acute {\text {S}}}_{\gamma }}}\right)={\dot {\acute {\text {S}}}_{\varepsilon }} {\varepsilon }=\underline {z}-{\gamma } Max operator: if
, then{\gamma }\leq {\varepsilon } \mathop {\mathrm {max}}\left ({{\dot {\acute {\text {S}}}_{\gamma }},{\dot {\acute {\text {S}}}_{\varepsilon }}}\right)={\dot {\acute {\text {S}}}_{\varepsilon }} Min operator: if
then{\gamma }{\geq }{\varepsilon } \mathop {\mathrm {min}}\left ({{\dot {\acute {\text {S}}}_{\gamma }},{\dot {\acute {\text {S}}}_{\varepsilon }}}\right)={\dot {\acute {\text {S}}}_{\varepsilon }}
Bipolar Complex Fuzzy Linguistic Set
In this Section, we propound the most treasured and expressive conception, named BCFLS by mixing the conception of BCFSs and LT sets. Moreover, we introduce the essential properties of the defined BCFLS.
Definition 5:
The structure of the BCFLS on \begin{align*} {A_{BCFLS}}=\left \{\begin{matrix} \left ({x},\left (\dot {\acute {\text {S}}}_{\gamma \left ({\mathsf{x}}\right)}, \left ({\mu _{A_{BCFLS}}^{P}}\left ({\mathsf{x}}\right), {\mu _{A_{BCFLS}}^{N}}\left ({\mathsf{x}}\right)\right)\right)\right)\\ | {\mathsf{x}} \in {\mathfrak {X}_{\mathcal {U}}}\end{matrix}\right \}\tag{4}\end{align*}
Definition 6:
For two BCFLNs
as shown in the equation at the bottom of the next page.
\begin{align*}&\hspace {-2pc}{A_{BCFLS-1}}{\oplus }~{A_{BCFLS-2}} \\=&\left ({\begin{matrix} {\dot {\acute {\text {S}}}_{{\gamma _{1}}+{\gamma _{1}}-\frac {{\gamma _{1}}{\gamma _{2}}}{\underline {z}}}},\\[0.5pc] \left ({\begin{matrix}{\mu _{A_{BCFLS-1}}^{RP}}+{\mu _{A_{BCFLS-2}}^{RP}}-{\mu _{A_{BCFLS-1}}^{RP}}{\mu _{A_{BCFLS-2}}^{RP}}\\[0.5pc] +\,{\iota }\left ({{\mu _{A_{BCFLS-1}}^{IP}}+{\mu _{A_{BCFLS-2}}^{IP}}-{\mu _{A_{BCFLS-1}}^{IP}}{\mu _{A_{BCFLS-2}}^{IP}}}\right),\\[0.5pc] -\,\left ({{\mu _{A_{BCFLS-1}}^{RN}}{\mu _{A_{BCFLS-2}}^{RN}}}\right)+{\iota }\left ({-\left ({{\mu _{A_{BCFLS-1}}^{IN}}{\mu _{A_{BCFLS-2}}^{IN}}}\right)}\right) \end{matrix}}\right) \end{matrix}}\right)\end{align*} View Source\begin{align*}&\hspace {-2pc}{A_{BCFLS-1}}{\oplus }~{A_{BCFLS-2}} \\=&\left ({\begin{matrix} {\dot {\acute {\text {S}}}_{{\gamma _{1}}+{\gamma _{1}}-\frac {{\gamma _{1}}{\gamma _{2}}}{\underline {z}}}},\\[0.5pc] \left ({\begin{matrix}{\mu _{A_{BCFLS-1}}^{RP}}+{\mu _{A_{BCFLS-2}}^{RP}}-{\mu _{A_{BCFLS-1}}^{RP}}{\mu _{A_{BCFLS-2}}^{RP}}\\[0.5pc] +\,{\iota }\left ({{\mu _{A_{BCFLS-1}}^{IP}}+{\mu _{A_{BCFLS-2}}^{IP}}-{\mu _{A_{BCFLS-1}}^{IP}}{\mu _{A_{BCFLS-2}}^{IP}}}\right),\\[0.5pc] -\,\left ({{\mu _{A_{BCFLS-1}}^{RN}}{\mu _{A_{BCFLS-2}}^{RN}}}\right)+{\iota }\left ({-\left ({{\mu _{A_{BCFLS-1}}^{IN}}{\mu _{A_{BCFLS-2}}^{IN}}}\right)}\right) \end{matrix}}\right) \end{matrix}}\right)\end{align*}
as shown in the equation at the bottom of the next page.
\begin{align*}&\hspace {-2pc}{A_{BCFLS-1}}{\otimes }~{A_{BCFLS-2}} \\=&\left ({\begin{matrix} {\dot {\acute {\text {S}}}_{\frac {{\gamma _{1}}{\gamma _{2}}}{\underline {z}}}},\\[0.5pc] \left ({\begin{matrix}{\mu _{A_{BCFLS-1}}^{RP}}{\mu _{A_{BCFLS-2}}^{RP}}+{\iota }{\mu _{A_{BCFLS-1}}^{IP}}{\mu _{A_{BCFLS-2}}^{IP}},\\[0.5pc] {\mu _{A_{BCFLS-1}}^{RN}}+{\mu _{A_{BCFLS-2}}^{RN}}+{\mu _{A_{BCFLS-1}}^{RN}}{\mu _{A_{BCFLS-2}}^{RN}}\\[0.5pc] {\iota }\left ({{\mu _{A_{BCFLS-1}}^{IN}}+{\mu _{A_{BCFLS-2}}^{IN}}+{\mu _{A_{BCFLS-1}}^{IN}}{\mu _{A_{BCFLS-2}}^{IN}}}\right) \end{matrix}}\right)\end{matrix}}\right)\end{align*} View Source\begin{align*}&\hspace {-2pc}{A_{BCFLS-1}}{\otimes }~{A_{BCFLS-2}} \\=&\left ({\begin{matrix} {\dot {\acute {\text {S}}}_{\frac {{\gamma _{1}}{\gamma _{2}}}{\underline {z}}}},\\[0.5pc] \left ({\begin{matrix}{\mu _{A_{BCFLS-1}}^{RP}}{\mu _{A_{BCFLS-2}}^{RP}}+{\iota }{\mu _{A_{BCFLS-1}}^{IP}}{\mu _{A_{BCFLS-2}}^{IP}},\\[0.5pc] {\mu _{A_{BCFLS-1}}^{RN}}+{\mu _{A_{BCFLS-2}}^{RN}}+{\mu _{A_{BCFLS-1}}^{RN}}{\mu _{A_{BCFLS-2}}^{RN}}\\[0.5pc] {\iota }\left ({{\mu _{A_{BCFLS-1}}^{IN}}+{\mu _{A_{BCFLS-2}}^{IN}}+{\mu _{A_{BCFLS-1}}^{IN}}{\mu _{A_{BCFLS-2}}^{IN}}}\right) \end{matrix}}\right)\end{matrix}}\right)\end{align*}
as shown in the equation at the bottom of the next page.
\begin{align*}&\hspace {-2pc}{\psi }{A_{BCFLS-1}} \\=&\left ({\begin{matrix} {\dot {\acute {\text {S}}}_{\underline {z}-\underline {z}{\left ({1 -\frac {\gamma _{1}}{\underline {z}}}\right)^{\psi }}}},\\[0.5pc] \left ({\begin{matrix} 1-{\left ({1-{\mu _{A_{BCFLS-1}}^{RP}}}\right)^{\psi }}+{\iota } \left ({1-{\left ({1-{\mu _{A_{BCFLS-1}}^{IP}}}\right)^{\psi }}}\right),\\[0.5pc] -{\left |{{\mu _{A_{BCFLS-1}}^{RN}}}\right |^{\psi }}+{\iota }\left ({-{\left |{{\mu _{A_{BCFLS-1}}^{IN}}}\right |^{\psi }}}\right) \end{matrix}}\right) \end{matrix}}\right)\end{align*} View Source\begin{align*}&\hspace {-2pc}{\psi }{A_{BCFLS-1}} \\=&\left ({\begin{matrix} {\dot {\acute {\text {S}}}_{\underline {z}-\underline {z}{\left ({1 -\frac {\gamma _{1}}{\underline {z}}}\right)^{\psi }}}},\\[0.5pc] \left ({\begin{matrix} 1-{\left ({1-{\mu _{A_{BCFLS-1}}^{RP}}}\right)^{\psi }}+{\iota } \left ({1-{\left ({1-{\mu _{A_{BCFLS-1}}^{IP}}}\right)^{\psi }}}\right),\\[0.5pc] -{\left |{{\mu _{A_{BCFLS-1}}^{RN}}}\right |^{\psi }}+{\iota }\left ({-{\left |{{\mu _{A_{BCFLS-1}}^{IN}}}\right |^{\psi }}}\right) \end{matrix}}\right) \end{matrix}}\right)\end{align*}
as shown in the equation at the bottom of the next page.
\begin{align*}&\hspace {-2pc}{A_{BCFLS-1}^{\psi }} \\=&\left ({\begin{matrix} {\dot {\acute {\text {S}}}_{\underline {z}{\left ({\frac {\gamma _{1}}{\underline {z}}}\right)^{\psi }}}},\\[0.5pc] \left ({\begin{matrix} {\left ({{\mu _{A_{BCFLS-1}}^{RP}}}\right)^{\psi }}+{\iota }{\left ({{\mu _{A_{BCFLS-1}}^{IP}}}\right)^{\psi }},\\[0.5pc] -1+{\left ({1+{\mu _{A_{BCFLS-1}}^{RN}}}\right)^{\psi }}+{\iota }\left ({-1+{\left ({1+{\mu _{A_{BCFLS-1}}^{IN}}}\right)^{\psi }}}\right) \end{matrix}}\right) \end{matrix}}\right)\end{align*} View Source\begin{align*}&\hspace {-2pc}{A_{BCFLS-1}^{\psi }} \\=&\left ({\begin{matrix} {\dot {\acute {\text {S}}}_{\underline {z}{\left ({\frac {\gamma _{1}}{\underline {z}}}\right)^{\psi }}}},\\[0.5pc] \left ({\begin{matrix} {\left ({{\mu _{A_{BCFLS-1}}^{RP}}}\right)^{\psi }}+{\iota }{\left ({{\mu _{A_{BCFLS-1}}^{IP}}}\right)^{\psi }},\\[0.5pc] -1+{\left ({1+{\mu _{A_{BCFLS-1}}^{RN}}}\right)^{\psi }}+{\iota }\left ({-1+{\left ({1+{\mu _{A_{BCFLS-1}}^{IN}}}\right)^{\psi }}}\right) \end{matrix}}\right) \end{matrix}}\right)\end{align*}
Definition 7:
The score value for any BCFLN \begin{align*}&\hspace {-1.7pc}{\mathcal {S}_{BCFLS}}\left ({{A_{BCFLS}}}\right) \\=&\frac {1}{4}\left ({2\!+\!{\mu _{A_{BCFLS}}^{RP}}\!+\!{\mu _{A_{BCFLS}}^{IP}} \!+\!{\mu _{A_{BCFLS}}^{RN}}\!+\!{\mu _{A_{BCFLS}}^{IN}}}\right)\!\times \! {\dot {\acute {\text {S}}}_{\gamma }}\tag{5}\end{align*}
Definition 8:
The accuracy value for any BCFLN \begin{align*}&\hspace {-0.5pc}{\mathcal {S}_{BCFLS}}\left ({{A_{BCFLS}}}\right) \\&=\,\frac {{\mu _{A_{BCFLS}}^{RP}}\!+\!{\mu _{A_{BCFLS}}^{IP}}\!+\!{\mu _{A_{BCFLS}}^{RN}} \!+\!{\mu _{A_{BCFLS}}^{IN}}}{4}\!\times \!{\dot {\acute {\text {S}}}_{\gamma }}\tag{6}\end{align*}
Theorem 1:
For two BCFLNs
{A_{BCFLS-1}}{\oplus }{A_{BCFLS-2}}={A_{BCFLS-2}}{\oplus }{A_{BCFLS-1}} {A_{BCFLS-1}}{\otimes }{A_{BCFLS-2}}={A_{BCFLS-2}}{\otimes }{A_{BCFLS-1}} {\psi _{1}}\left ({{A_{BCFLS-1}}{\oplus }{A_{BCFLS-2}}}\right)={\psi _{1}}{A_{BCFLS-1}}{\oplus }{\psi _{1}}{A_{BCFLS-2}} {\left ({{A_{BCFLS-1}}{\otimes }{A_{BCFLS-2}}}\right)^{\psi _{1}}} ={A_{BCFLS-1}^{\psi _{1}}}{\otimes }{A_{BCFLS-2}^{\psi _{1}}} {\psi _{1}}{A_{BCFLS-1}}{\oplus }{\psi _{2}}{A_{BCFLS-1}}=\left ({{\psi _{1}}+{\psi _{2}}}\right){A_{BCFLS-1}} {A_{BCFLS-1}^{\psi _{1}}}{\otimes }{A_{BCFLS-1}^{\psi _{2}}}={A_{BCFLS-1}^{{\psi _{1}}+{\psi _{2}}}}
Proof:
Trivial
Bipolar Complex Fuzzy Linguistic Aggregation Operators
In this part of the manuscript, we scrutinize average and geometric AOs such as BCFLWA and BCFLWG operators for BCFLNs. Let
Definition 9:
By considering the family of BCFLNs i.e. \begin{align*}&\hspace {-2pc}BCFLWA\left ({{A_{BCFLS-1}},~{A_{BCFLS-2}},\ldots,~{A_{BCFLS-n}}}\right) \\=&{\begin{array}{c} n\\ {\oplus }\\ j=1\end{array}}{{\mathsf{w}}_{wv-j}}{A_{BCFLS-j}} \\=&{{\mathsf{w}}_{wv-1}}{A_{BCFLS-1}}{\oplus } {{\mathsf{w}}_{wv-2}}{A_{BCFLS-2}} \\&{\oplus }\cdots {\oplus }{{\mathsf{w}}_{wv-n}}{A_{BCFLS-n}}\tag{7}\end{align*}
Theorem 2:
By aggregating Eq (7), we achieved the outcome again in the structure of BCFLN and \begin{align*}&\hspace {-2pc}BCFLWA\left ({{A_{BCFLS-1}},{A_{BCFLS-2}},\ldots,{A_{BCFLS-n}}}\right) \\=&\left ({\begin{matrix} {\dot {\acute {\text {S}}}_{\underline {z}-\underline {z}\mathop {\prod }_{j=1}^{n}{\left ({1 -\frac {\gamma _{j}}{\underline {z}}}\right)^{{\mathsf{w}}_{wv-j}}}}},\\ \left ({\begin{matrix} 1-\mathop {\prod }\limits _{j=1}^{n}{\left ({1-{\mu _{A_{BCFLS-j}}^{RP}}}\right)^{{\mathsf{w}}_{wv-j}}}\\ +\,{\iota }~\left ({1-\mathop {\prod }\limits _{j=1}^{n} {\left ({1-{\mu _{A_{BCFLS-j}}^{IP}}}\right)^{{\mathsf{w}}_{wv-j}}}}\right),\\ -\mathop {\prod }\limits _{j=1}^{n}{\left |{{\mu _{A_{BCFLS-j}}^{RN}}}\right |^{{\mathsf{w}}_{wv-j}}}\\ +\,{\iota }~\left ({-\mathop {\prod }\limits _{j=1}^{n} {\left |{{\mu _{A_{BCFLS-j}}^{IN}}}\right |^{{\mathsf{w}}_{wv-j}}}}\right)\end{matrix}}\right) \end{matrix}}\right)\tag{8}\end{align*}
Proof:
We would prove this by utilizing the procedure of mathematical induction. Suppose that \begin{align*}&\hspace {-2pc}{{{\mathsf{w}}_{wv-1}}A_{BCFLS-1}} \\=&\left ({{\dot {\acute {\text {S}}}_{\underline {z}-\underline {z}{\left ({1 -\frac {\gamma _{1}}{\underline {z}}}\right)^{{\mathsf{w}}_{wv-1}}}}},~\left ({\begin{matrix} 1-{\left ({1-{\mu _{A_{BCFLS-1}}^{RP}}}\right)^{{\mathsf{w}}_{wv-1}}}\\ +\,{\iota }~\left ({1-{\left ({1-{\mu _{A_{BCFLS-1}}^{IP}}}\right)^{{\mathsf{w}}_{wv-1}}}}\right),\\ -{\left |{{\mu _{A_{BCFLS-1}}^{RN}}}\right |^{{\mathsf{w}}_{wv-1}}}\\ +\,{\iota }~\left ({-{\left |{{\mu _{A_{BCFLS-1}}^{IN}}}\right |^{{\mathsf{w}}_{wv-1}}}}\right) \end{matrix}}\right)}\right)\\&\hspace {-2pc}{{{\mathsf{w}}_{wv-2}}A_{BCFLS-2}} \\=&\left ({{\dot {\acute {\text {S}}}_{\underline {z}-\underline {z}{\left ({1 -\frac {\gamma _{2}}{\underline {z}}}\right)^{{\mathsf{w}}_{wv-2}}}}}, \left ({\begin{matrix} 1-{\left ({1-{\mu _{A_{BCFLS-2}}^{RP}}}\right)^{{\mathsf{w}}_{wv-2}}}\\ +\,{\iota }~\left ({1-{\left ({1-{\mu _{A_{BCFLS-2}}^{IP}}}\right)^{{\mathsf{w}}_{wv-2}}}}\right),\\ -{\left |{{\mu _{A_{BCFLS-2}}^{RN}}}\right |^{{\mathsf{w}}_{wv-2}}}\\ +\,{\iota }~\left ({-{\left |{{\mu _{A_{BCFLS-2}}^{IN}}}\right |^{{\mathsf{w}}_{wv-2}}}}\right)\end{matrix}}\right)}\right)\end{align*}
\begin{align*}&\hspace {-2pc}{{{\mathsf{w}}_{wv-1}}A_{BCFLS-1}}{\oplus } {{{\mathsf{w}}_{wv-2}}A_{BCFLS-2}} \\=&\left ({{\dot {\acute {\text {S}}}_{\underline {z}-\underline {z}{\left ({1 -\frac {\gamma _{1}}{\underline {z}}}\right)^{{\mathsf{w}}_{wv-1}}}}},~\left ({\begin{matrix} 1-{\left ({1-{\mu _{A_{BCFLS-1}}^{RP}}}\right)^{{\mathsf{w}}_{wv-1}}}\\ +\,{\iota }~\left ({1-{\left ({1-{\mu _{A_{BCFLS-1}}^{IP}}}\right)^{{\mathsf{w}}_{wv-1}}}}\right),\\ -{\left |{{\mu _{A_{BCFLS-1}}^{RN}}}\right |^{{\mathsf{w}}_{wv-1}}}\\ +\,{\iota }~\left ({-{\left |{{\mu _{A_{BCFLS-1}}^{IN}}}\right |^{{\mathsf{w}}_{wv-1}}}}\right) \end{matrix}}\right)}\right) \\&\oplus \,\left ({{\dot {\acute {\text {S}}}_{\underline {z}-\underline {z}{\left ({1 -\frac {\gamma _{2}}{\underline {z}}}\right)^{{\mathsf{w}}_{wv-2}}}}},~\left ({\begin{matrix} 1-{\left ({1-{\mu _{A_{BCFLS-2}}^{RP}}}\right)^{{\mathsf{w}}_{wv-2}}}\\ +\,{\iota }~\left ({1-{\left ({1-{\mu _{A_{BCFLS-2}}^{IP}}}\right)^{{\mathsf{w}}_{wv-2}}}}\right),\\ -{\left |{{\mu _{A_{BCFLS-2}}^{RN}}}\right |^{{\mathsf{w}}_{wv-2}}}\\ +\,{\iota }~\left ({-{\left |{{\mu _{A_{BCFLS-2}}^{IN}}}\right |^{{\mathsf{w}}_{wv-2}}}}\right) \end{matrix}}\right)}\right)\\=&\left ({\begin{matrix} {\dot {\acute {\text {S}}}_{\underline {z}-\underline {z}{\left ({1 -\frac {\gamma _{1}}{\underline {z}}}\right)^{{\mathsf{w}}_{wv-1}}}{\left ({1 -\frac {\gamma _{2}}{\underline {z}}}\right)^{{\mathsf{w}}_{wv-2}}}}},\\ \left ({\begin{matrix} \begin{matrix} 1-{\left ({1-{\mu _{A_{BCFLS-1}}^{RP}}}\right)^{{\mathsf{w}}_{wv-1}}} {\left ({1-{\mu _{A_{BCFLS-2}}^{RP}}}\right)^{{\mathsf{w}}_{wv-2}}}\\ +\,{\iota }~\left ({1-{\left ({1-{\mu _{A_{BCFLS-1}}^{IP}}}\right)^{{\mathsf{w}}_{wv-1}}} {\left ({1-{\mu _{A_{BCFLS-2}}^{IP}}}\right)^{{\mathsf{w}}_{wv-2}}}}\right)\\ -\left ({\left ({-{\left |{{\mu _{A_{BCFLS-1}}^{RN}}}\right |^{{\mathsf{w}}_{wv-1}}}}\right) \left ({-{\left |{{\mu _{A_{BCFLS-2}}^{RN}}}\right |^{{\mathsf{w}}_{wv-2}}}}\right)}\right)\end{matrix},\\ +\,{\iota }~\left ({-\left ({\left ({-{\left |{{\mu _{A_{BCFLS-1}}^{IN}}}\right |^{{\mathsf{w}}_{wv-1}}}}\right) \left ({-{\left |{{\mu _{A_{BCFLS-2}}^{IN}}}\right |^{{\mathsf{w}}_{wv-2}}}}\right)}\right)}\right) \end{matrix}}\right)\end{matrix}}\right)\\=&\left ({\begin{matrix} {\dot {\acute {\text {S}}}_{\underline {z}-\underline {z}\mathop {\prod }_{j=1}^{2}{\left ({1 -\frac {\gamma _{j}}{\underline {z}}}\right)^{{\mathsf{w}}_{wv-j}}}}},\\ \left ({\begin{matrix} 1-\mathop {\prod }\limits _{j=1}^{2}{\left ({1-{\mu _{A_{BCFLS-j}}^{RP}}}\right)^{{\mathsf{w}}_{wv-j}}}\\ +\,{\iota }~\left ({1-\mathop {\prod }\limits _{j=1}^{2} {\left ({1-{\mu _{A_{BCFLS-j}}^{IP}}}\right)^{{\mathsf{w}}_{wv-j}}}}\right),\\ -\mathop {\prod }\limits _{j=1}^{2}{\left |{{\mu _{A_{BCFLS-j}}^{RN}}}\right |^{{\mathsf{w}}_{wv-j}}}\\ +\,{\iota }~\left ({-\mathop {\prod }\limits _{j=1}^{2}{\left |{{\mu _{A_{BCFLS-j}}^{IN}} }\right |^{{\mathsf{w}}_{wv-j}}}}\right)\end{matrix}}\right) \end{matrix}}\right)\end{align*}
\begin{align*}&\hspace {-2pc}BCFLWA\left ({{A_{BCFLS-1}},~{A_{BCFLS-2}},\ldots,~{A_{BCFLS-\mathcal {E}}}}\right) \\=&\left ({\begin{matrix} {\dot {\acute {\text {S}}}_{\underline {z}-\underline {z}\mathop {\prod }_{j=1}^{\mathcal {E}}{\left ({1 -\frac {\gamma _{j}}{\underline {z}}}\right)^{{\mathsf{w}}_{wv-j}}}}},\\ \left ({\begin{matrix} 1-\mathop {\prod }\limits _{j=1}^{\mathcal {E}} {\left ({1-{\mu _{A_{BCFLS-j}}^{RP}}}\right)^{{\mathsf{w}}_{wv-j}}}\\ +\,{\iota }~\left ({1-\mathop {\prod }\limits _{j=1}^{\mathcal {E}} {\left ({1-{\mu _{A_{BCFLS-j}}^{IP}}}\right)^{{\mathsf{w}}_{wv-j}}}}\right),\\ -\mathop {\prod }\limits _{j=1}^{\mathcal {E}} {\left |{{\mu _{A_{BCFLS-j}}^{RN}}}\right |^{{\mathsf{w}}_{wv-j}}}\\ +\,{\iota }~\left ({-\mathop {\prod }\limits _{j=1}^{\mathcal {E}} {\left |{{\mu _{A_{BCFLS-j}}^{IN}}}\right |^{{\mathsf{w}}_{wv-j}}}}\right) \end{matrix}}\right) \end{matrix}}\right)\end{align*}
\begin{align*}&\hspace {-1.3pc}BCFLWA \\[-1pt]&\times \,\left ({{A_{BCFLS-1}},{A_{BCFLS-2}},\ldots,{A_{BCFLS-\mathcal {E}}},{A_{BCFLS-\mathcal {E}+1}}}\right) \\[-1pt]=&\left ({\begin{matrix} {\dot {\acute {\text {S}}}_{\underline {z}-\underline {z}\mathop {\prod }_{j=1}^{\mathcal {E}}{\left ({1 -\frac {\gamma _{j}}{\underline {z}}}\right)^{{\mathsf{w}}_{wv-j}}}}},\\[-1pt] \left ({\begin{matrix} 1-\mathop {\prod }\limits _{j=1}^{\mathcal {E}}{\left ({1-{\mu _{A_{BCFLS-j}}^{RP}}}\right)^{{\mathsf{w}}_{wv-j}}}\\[-1pt] +\,{\iota }~\left ({1-\mathop {\prod }\limits _{j=1}^{\mathcal {E}}{\left ({1-{\mu _{A_{BCFLS-j}}^{IP}}}\right)^{{\mathsf{w}}_{wv-j}}}}\right),\\ -\mathop {\prod }\limits _{j=1}^{\mathcal {E}}{\left |{{\mu _{A_{BCFLS-j}}^{RN}}}\right |^{{\mathsf{w}}_{wv-j}}}\\[-1pt] +\,{\iota }~\left ({-\mathop {\prod }\limits _{j=1}^{\mathcal {E}} {\left |{{\mu _{A_{BCFLS-j}}^{IN}}}\right |^{{\mathsf{w}}_{wv-j}}}}\right) \end{matrix}}\right) \end{matrix}}\right) \\[-1pt]&\oplus \,\left ({\begin{matrix} {\dot {\acute {\text {S}}}_{\underline {z}-\underline {z}{\left ({1 -\frac {\gamma _{\mathcal {E}+1}}{\underline {z}}}\right)^{{\mathsf{w}}_{wv-\mathcal {E}+1}}}}},\\[-1pt] \left ({\begin{matrix} 1-{\left ({1-{\mu _{A_{BCFLS-\mathcal {E}+1}}^{RP}}}\right)^{{\mathsf{w}}_{wv-\mathcal {E}+1}}}\\[-1pt] +\,{\iota }~\left ({1-{\left ({1-{\mu _{A_{BCFLS-\mathcal {E}+1}}^{IP}}}\right)^{{\mathsf{w}}_{wv-\mathcal {E}+1}}}}\right),\\[-1pt] -{\left |{{\mu _{A_{BCFLS-\mathcal {E}+1}}^{RN}}}\right |^{{\mathsf{w}}_{wv-\mathcal {E}+1}}}\\[-1pt] +\,{\iota }~\left ({-{\left |{{\mu _{A_{BCFLS-\mathcal {E}+1}}^{IN}}}\right |^{{\mathsf{w}}_{wv-\mathcal {E}+1}}} }\right)\end{matrix}}\right)\end{matrix}}\right)\\[-1pt]=&\left ({\begin{matrix} {\dot {\acute {\text {S}}}_{\underline {z}-\underline {z}\mathop {\prod }_{j=1}^{\mathcal {E}+1}{\left ({1 -\frac {\gamma _{j}}{\underline {z}}}\right)^{{\mathsf{w}}_{wv-j}}}}},\\[-1pt] \left ({\begin{matrix} 1-\mathop {\prod }\limits _{j=1}^{\mathcal {E}+1} {\left ({1-{\mu _{A_{BCFLS-j}}^{RP}}}\right)^{{\mathsf{w}}_{wv-j}}}\\[-1pt] +\,{\iota }~\left ({1-\mathop {\prod }\limits _{j=1}^{\mathcal {E}+1} {\left ({1-{\mu _{A_{BCFLS-j}}^{IP}}}\right)^{{\mathsf{w}}_{wv-j}}}}\right),\\[-1pt] -\mathop {\prod }\limits _{j=1}^{\mathcal {E}+1} {\left |{{\mu _{A_{BCFLS-j}}^{RN}}}\right |^{{\mathsf{w}}_{wv-j}}}\\[-1pt] +\,{\iota }~\left ({-\mathop {\prod }\limits _{j=1}^{\mathcal {E}+1} {\left |{{\mu _{A_{BCFLS-j}}^{IN}}}\right |^{{\mathsf{w}}_{wv-j}}}}\right)\end{matrix}}\right)\end{matrix}}\right)\end{align*}
Moreover, the idempotency, monotonicity, and boundedness are satisfied by the diagnosed BCFLWA operators and are presented as follows
Idempotency: By considering the family of BCFLNs i.e.
,{A_{BCFLS-j}}=\left ({{\dot {\acute {\text {S}}}_{\gamma _{j}}},\left ({{\mu _{A_{BCFLS-j}}^{P}}, {\mu _{A_{BCFLS-j}}^{N}}}\right)}\right)=\left ({{\dot {\acute {\text {S}}}_{\gamma _{j}}},\left ({{\mu _{A_{BCFLS-j}}^{RP}} \!+\!{\iota }{\mu _{{A_{BCFLS}}-j}^{IP}},{\mu _{A_{BCFLS-j}}^{RN}}\!+\!{\iota }{\mu _{A_{BCFLS-j}}^{IN}}}\right)}\right) , ifj=1,2,\ldots,n for all{A_{BCFLS-j}}={A_{BCFLS}} , thenj \begin{align*}&\hspace {-2pc}BCFLWA\left ({{A_{BCFLS-1}}, {A_{BCFLS-2}},\ldots, {A_{BCFLS-n}}}\right) \\&\qquad \qquad \qquad \qquad \qquad =\,{A_{BCFLS}}\tag{9}\end{align*} View Source\begin{align*}&\hspace {-2pc}BCFLWA\left ({{A_{BCFLS-1}}, {A_{BCFLS-2}},\ldots, {A_{BCFLS-n}}}\right) \\&\qquad \qquad \qquad \qquad \qquad =\,{A_{BCFLS}}\tag{9}\end{align*}
Monotonicity: By considering two families of BCFLNs i.e.
and{A_{BCFLS-j}}=\left ({{\dot {\acute {\text {S}}}_{\gamma _{j}}},\left ({{\mu _{A_{BCFLS-j}}^{P}}, {\mu _{A_{BCFLS-j}}^{N}}}\right)}\right)=\left ({{\dot {\acute {\text {S}}}_{\gamma _{j}}},\left ({{\mu _{A_{BCFLS-j}}^{RP}}+{\iota } {\mu _{{A_{BCFLS}}-j}^{IP}},{\mu _{A_{BCFLS-j}}^{RN}}\!+{\iota }{\mu _{A_{BCFLS-j}}^{IN}}}\right)}\right) ,{A_{BCFLS-j}^{\prime }}=\left ({{\dot {\acute {\text {S}}}_{\gamma _{j}}},\left ({{\mu _{A_{BCFLS-j}^{\prime }}^{P}}, {\mu _{A_{BCFLS-j}^{\prime }}^{N}}}\right)}\right) \!=\! \left ({{\dot {\acute {\text {S}}}_{\gamma _{j}}},\left ({{\mu _{A_{BCFLS-j}^{\prime }}^{RP}} \!+\!{\iota }{\mu _{A_{BCFLS-j}^{\prime }}^{IP}},{\mu _{A_{BCFLS-j}^{\prime }}^{RN}} \!+{\iota }{\mu _{A_{BCFLS-j}^{\prime }}^{IN}}}\right)\!}\right) ifj=1,2,\ldots,n ,{\mu _{A_{BCFLS-j}}^{RP}}\leq {\mu _{A_{BCFLS-j}^{\prime }}^{RP}} ,{\mu _{A_{BCFLS-j}}^{IP}} \leq {\mu _{A_{BCFLS-j}^{\prime }}^{IP}} ,{\mu _{A_{BCFLS-j}}^{RN}}\leq {\mu _{A_{BCFLS-j}^{\prime }}^{RN}} then{\mu _{A_{BCFLS-j}}^{IN}}\leq {\mu _{A_{BCFLS-j}^{\prime }}^{IN}}{\forall }j \begin{align*}&\hspace {-2pc}BCFLWA\left ({{A_{BCFLS-1}},{A_{BCFLS-2}},\ldots,{A_{BCFLS-n}}}\right) \\\leq&BCFLWA\left ({{A_{BCFLS-1}^{\prime }},{A_{BCFLS-2}^{\prime }},\ldots,{A_{BCFLS-n}^{\prime }}}\right) \\{}\tag{10}\end{align*} View Source\begin{align*}&\hspace {-2pc}BCFLWA\left ({{A_{BCFLS-1}},{A_{BCFLS-2}},\ldots,{A_{BCFLS-n}}}\right) \\\leq&BCFLWA\left ({{A_{BCFLS-1}^{\prime }},{A_{BCFLS-2}^{\prime }},\ldots,{A_{BCFLS-n}^{\prime }}}\right) \\{}\tag{10}\end{align*}
Boundedness: By considering the family of BCFLNs i.e.
and suppose that{A_{BCFLS-j}}=\left ({{\dot {\acute {\text {S}}}_{\gamma _{j}}},\left ({{\mu _{A_{BCFLS-j}}^{P}}, {\mu _{A_{BCFLS-j}}^{N}}}\right)}\right)=\left ({{\dot {\acute {\text {S}}}_{\gamma _{j}}},\left ({{\mu _{A_{BCFLS-j}}^{RP}} +{\iota }\,\,{\mu _{{A_{BCFLS}}-j}^{IP}}, {\mu _{A_{BCFLS-j}}^{RN}}}+{{\iota } {\mu _{A_{BCFLS-j}}^{IN}}}\right)}\right), j=1,\,\,2,\ldots,\,\,n , and\begin{aligned} {A_{BCFLS}^{-}} =\left ({\begin{matrix}\mathop {\mathrm {min}}\limits _{j}\left \{{{\mu _{A_{BCFLS-j}}^{RP}}}\right \} +{\iota }\,\,\mathop {\mathrm {min}}\limits _{j}\left \{{{\mu _{A_{BCFLS-j}}^{IP}}}\right \}, \\ \mathop {\mathrm {max}}\limits _{j}\left \{{{\mu _{A_{BCFLS-j}}^{RN}}}\right \}+{\iota }\,\,\mathop {\mathrm {max}}\limits _{j}\left \{{{\mu _{A_{BCFLS-j}}^{IN}}}\right \}\end{matrix}}\right) \end{aligned} then\begin{align*} {A_{BCFLS}^{+}}=\left ({\begin{matrix}\mathop {\mathrm {max}}\limits _{j}\left \{{{\mu _{A_{BCFLS-j}}^{RP}}}\right \} +{\iota }~\mathop {\mathrm {max}}\limits _{j}\left \{{{\mu _{A_{BCFLS-j}}^{IP}}}\right \}, \\ \mathop {\mathrm {min}}\limits _{j}\left \{{{\mu _{A_{BCFLS-j}}^{RN}}}\right \} +{\iota }~\mathop {\mathrm {min}}\limits _{j}\left \{{{\mu _{A_{BCFLS-j}}^{IN}}}\right \}\end{matrix}}\right),\end{align*} View Source\begin{align*} {A_{BCFLS}^{+}}=\left ({\begin{matrix}\mathop {\mathrm {max}}\limits _{j}\left \{{{\mu _{A_{BCFLS-j}}^{RP}}}\right \} +{\iota }~\mathop {\mathrm {max}}\limits _{j}\left \{{{\mu _{A_{BCFLS-j}}^{IP}}}\right \}, \\ \mathop {\mathrm {min}}\limits _{j}\left \{{{\mu _{A_{BCFLS-j}}^{RN}}}\right \} +{\iota }~\mathop {\mathrm {min}}\limits _{j}\left \{{{\mu _{A_{BCFLS-j}}^{IN}}}\right \}\end{matrix}}\right),\end{align*}
\begin{align*} {A_{BCFLS}^{-}}\leq&BCFLWA \\&\times \,\left ({{A_{BCFLS-1}},{A_{BCFLS-2}},\ldots,{A_{BCFLS-n}}}\right) \\\leq&{A_{BCFLS}^{+}}\tag{11}\end{align*} View Source\begin{align*} {A_{BCFLS}^{-}}\leq&BCFLWA \\&\times \,\left ({{A_{BCFLS-1}},{A_{BCFLS-2}},\ldots,{A_{BCFLS-n}}}\right) \\\leq&{A_{BCFLS}^{+}}\tag{11}\end{align*}
Definition 10:
By considering the family of BCFLNs i.e. \begin{align*}&\hspace {-2pc}BCFLWG\left ({{A_{BCFLS-1}},~{A_{BCFLS-2}},\ldots,~{A_{BCFLS-n}}}\right) \\=&{\begin{array}{c} n\\ {\otimes }\\ j=1 \end{array}} {\left ({{A_{BCFLS-j}}}\right)^{{\mathsf{w}}_{wv-j}}} \\=&{\left ({{A_{BCFLS-1}}}\right)^{{\mathsf{w}}_{wv-1}}} {\otimes }{\left ({{A_{BCFLS-2}}}\right)^{{\mathsf{w}}_{wv-2}}} \\&\otimes \,\cdots {\otimes }{\left ({{A_{BCFLS-n}}}\right)^{{\mathsf{w}}_{wv-n}}}\tag{12}\end{align*}
Theorem 3:
By aggregating Eq (12), we achieved the outcome again in the structure of BCFLN and \begin{align*}&\hspace {-2pc}BCFLWG\left ({{A_{BCFLS-1}},{A_{BCFLS-2}},\ldots,{A_{BCFLS-n}}}\right) \\[2pt]=&\left ({\begin{matrix} {\dot {\acute {\text {S}}}_{\underline {z}\mathop {\prod }_{j=1}^{n} {\left ({\frac {\gamma _{j}} {\underline {z}}}\right)^{{\mathsf{w}}_{wv-j}}}}},\\[2pt] \left ({\begin{matrix} \mathop {\prod }\limits _{j=1}^{n} {\left ({{\mu _{A_{BCFLS-j}}^{RP}}}\right)^{{\mathsf{w}}_{wv-j}}}\\[2pt] +{\iota }~\mathop {\prod }\limits _{j=1}^{n} {\left ({{\mu _{A_{BCFLS-j}}^{IP}}}\right)^{{\mathsf{w}}_{wv-j}}},\\[2pt] -1+\mathop {\prod }\limits _{j=1}^{n}{\left ({1 +{\mu _{A_{BCFLS-j}}^{RN}}}\right)^{{\mathsf{w}}_{wv-j}}}\\[2pt] +{\iota }~\left ({-1+\mathop {\prod }\limits _{j=1}^{n}{\left ({1 +{\mu _{A_{BCFLS-j}}^{RN}}}\right)^{{\mathsf{w}}_{wv-j}}}}\right) \end{matrix}}\right) \end{matrix}}\right)\tag{13}\end{align*}
Proof:
We would prove this by utilizing the procedure of mathematical induction. Suppose that \begin{align*}&\hspace {-2pc}{\left ({{A_{BCFLS-1}}}\right)^{{\mathsf{w}}_{wv-1}}} \\=&\left ({{\dot {\acute {\text {S}}}_{\underline {z} {\left ({\frac {\gamma _{1}}{\underline {z}}}\right)^{{\mathsf{w}}_{wv-1}}}}}, \left (\begin{matrix} {\left ({{\mu _{A_{BCFLS-1}}^{RP}}}\right)^{{\mathsf{w}}_{wv-1}}}\\ +\,{\iota }~{\left ({{\mu _{A_{BCFLS-1}}^{IP}}}\right)^{{\mathsf{w}}_{wv-1}}},\\ -1+{\left ({1+{\mu _{A_{BCFLS-1}}^{RN}}}\right)^{{\mathsf{w}}_{wv-1}}}\\ +\,{\iota }~\left ({-1+{\left ({1+{\mu _{A_{BCFLS-1}}^{IN}}}\right)^{{\mathsf{w}}_{wv-1}}}}\right) \end{matrix}\right)}\right)\\&\hspace {-2pc} {\left ({{A_{BCFLS-2}}}\right)^{{\mathsf{w}}_{wv-2}}} \\=&\left ({{\dot {\acute {\text {S}}}_{\underline {z} {\left ({\frac {\gamma _{1}}{\underline {z}}}\right)^{{\mathsf{w}}_{wv-2}}}}},\left (\begin{matrix} {\left ({{\mu _{A_{BCFLS-2}}^{RP}}}\right)^{{\mathsf{w}}_{wv-2}}}\\ +\,{\iota }~{\left ({{\mu _{A_{BCFLS-2}}^{IP}}}\right)^{{\mathsf{w}}_{wv-2}}},\\ -1+{\left ({1+{\mu _{A_{BCFLS-2}}^{RN}}}\right)^{{\mathsf{w}}_{wv-2}}}\\ +\,{\iota }~\left ({-1+{\left ({1+{\mu _{A_{BCFLS-2}}^{IN}}}\right)^{{\mathsf{w}}_{wv-2}}}}\right) \end{matrix}\right)}\right) \end{align*}
\begin{align*}&\hspace {-2pc}{\left ({{A_{BCFLS-1}}}\right)^{{\mathsf{w}}_{wv-1}}}{\otimes } {\left ({{A_{BCFLS-2}}}\right)^{{\mathsf{w}}_{wv-2}}} =&\left ({{\dot {\acute {\text {S}}}_{\underline {z}{\left ({\frac {\gamma _{1}}{\underline {z}}}\right)^{{\mathsf{w}}_{wv-1}}}}}~,~\left(\begin{matrix} {\left ({{\mu _{A_{BCFLS-1}}^{RP}}}\right)^{{\mathsf{w}}_{wv-1}}}\\ +\,{\iota }~{\left ({{\mu _{A_{BCFLS-1}}^{IP}}}\right)^{{\mathsf{w}}_{wv-1}}},\\ -1+{\left ({1+{\mu _{A_{BCFLS-1}}^{RN}}}\right)^{{\mathsf{w}}_{wv-1}}}\\ +\,{\iota }~\left ({-1+{\left ({1+{\mu _{A_{BCFLS-1}}^{IN}}}\right)^{{\mathsf{w}}_{wv-1}}}}\right) \end{matrix}\right)}\right)\\&\otimes \,\left ({{\dot {\acute {\text {S}}}_{\underline {z}{\left ({\frac {\gamma _{1}} {\underline {z}}}\right)^{{\mathsf{w}}_{wv-2}}}}},\left (\begin{matrix} {\left ({{\mu _{A_{BCFLS-2}}^{RP}}}\right)^{{\mathsf{w}}_{wv-2}}}\\ +\,{\iota }~{\left ({{\mu _{A_{BCFLS-2}}^{IP}}}\right)^{{\mathsf{w}}_{wv-2}}},\\ -1+{\left ({1+{\mu _{A_{BCFLS-2}}^{RN}}}\right)^{{\mathsf{w}}_{wv-2}}}\\ +\,{\iota }~\left ({-1+{\left ({1+{\mu _{A_{BCFLS-2}}^{IN}}}\right)^{{\mathsf{w}}_{wv-2}}}}\right) \end{matrix}\right)}\right) \end{align*}
\begin{align*} =&\left (\begin{matrix} {\dot {\acute {\text {S}}}_{\underline {z}{\left ({\frac {\gamma _{1}}{\underline {z}}}\right)^{{\mathsf{w}}_{wv-1}}} \underline {z}{\left ({\frac {\gamma _{2}} {\underline {z}}}\right)^{{\mathsf{w}}_{wv-2}}}}},\\ \left (\begin{matrix} \begin{matrix} \begin{matrix} {\left ({{\mu_{A_{BCFLS-1}}^{RP}}}\right)^{{\mathsf{w}}_{wv-1}}} {\left ({{\mu _{A_{BCFLS-2}}^{RP}}}\right)^{{\mathsf{w}}_{wv-2}}}\\ +\,{\iota }~\left ({{\left ({{\mu _{A_{BCFLS-1}}^{IP}}}\right)^{{\mathsf{w}}_{wv-1}}} {\left ({{\mu _{A_{BCFLS-2}}^{IP}}}\right)^{{\mathsf{w}}_{wv-2}}}}\right), \end{matrix}\\ -1+{\left ({1+{\mu _{A_{BCFLS-1}}^{RN}}}\right)^{{\mathsf{w}}_{wv-1}}} {\left ({1+{\mu _{A_{BCFLS-2}}^{RN}}}\right)^{{\mathsf{w}}_{wv-2}}}\end{matrix}\\ +\,{\iota }~\left ({-1+{\left ({1+{\mu _{A_{BCFLS-1}}^{IN}}}\right)^{{\mathsf{w}}_{wv-1}}} {\left ({1+{\mu _{A_{BCFLS-2}}^{IN}}}\right)^{{\mathsf{w}}_{wv-2}}}}\right)\end{matrix}\right) \end{matrix}\right)\end{align*}
\begin{align*} =&\left (\begin{matrix} {\dot {\acute {\text {S}}}_{\underline {z}\mathop {\prod }_{j=1}^{2} {\left ({\frac {\gamma _{j}}{\underline {z}}}\right)^{{\mathsf{w}}_{wv-j}}}}},\\ \left (\begin{matrix} \mathop {\prod }\limits _{j=1}^{2}{\left ({{\mu _{A_{BCFLS-j}}^{RP}}}\right)^{{\mathsf{w}}_{wv-j}}}\\ +\,{\iota }~\mathop {\prod }\limits _{j=1}^{2} {\left ({{\mu _{A_{BCFLS-j}}^{IP}}}\right)^{{\mathsf{w}}_{wv-j}}},\\ -1+\mathop {\prod }\limits _{j=1}^{2}{\left ({1+{\mu _{A_{BCFLS-j}}^{RN}}}\right)^{{\mathsf{w}}_{wv-j}}}\\ +\,{\iota }~\left ({-1+\mathop {\prod }\limits _{j=1}^{2} {\left ({1+{\mu _{A_{BCFLS-j}}^{RN}}}\right)^{{\mathsf{w}}_{wv-j}}}}\right) \end{matrix}\right)\end{matrix}\right)\end{align*}
\begin{align*} BCFLWG\left ({{A_{BCFLS-1}},~{A_{BCFLS-2}},\ldots,~{A_{BCFLS-\mathcal {E}}}}\right)=\left ({\begin{matrix} {\dot {\acute {\text {S}}}_{\underline {z}\mathop {\prod }_{j=1}^{\mathcal {E}}{\left ({\frac {\gamma _{j}} {\underline {z}}}\right)^{{\mathsf{w}}_{wv-j}}}}},\\[2pt] \left ({\begin{matrix} \mathop {\prod }\limits _{j=1}^{\mathcal {E}} {\left ({{\mu _{A_{BCFLS-j}}^{RP}}}\right)^{{\mathsf{w}}_{wv-j}}}\\[2pt] +\,{\iota }~\mathop {\prod }\limits _{j=1}^{\mathcal {E}} {\left ({{\mu _{A_{BCFLS-j}}^{IP}}}\right)^{{\mathsf{w}}_{wv-j}}},\\[2pt] -1+\mathop {\prod }\limits _{j=1}^{\mathcal {E}} {\left ({1+{\mu _{A_{BCFLS-j}}^{RN}}}\right)^{{\mathsf{w}}_{wv-j}}}\\[2pt] +\,{\iota }~\left ({-1+\mathop {\prod }\limits _{j=1}^{\mathcal {E}} {\left ({1+{\mu _{A_{BCFLS-j}}^{RN}}}\right)^{{\mathsf{w}}_{wv-j}}}}\right) \end{matrix}}\right)\end{matrix}}\right)\end{align*}
\begin{align*}&\hspace {-1.4pc}BCFLWG \left ({{A_{BCFLS-1}},{A_{BCFLS-2}},\ldots,{A_{BCFLS-\mathcal {E}}},{A_{BCFLS-\mathcal {E}+1}}\!}\right) \\[2pt]=&\left ({\begin{matrix} {\dot {\acute {\text {S}}}_{\underline {z}\mathop {\prod }_{j=1}^{\mathcal {E}} {\left ({\frac {\gamma _{j}}{\underline {z}}}\right)^{{\mathsf{w}}_{wv-j}}}}},\\[2pt] \left ({\begin{matrix} \mathop {\prod }\limits _{j=1}^{\mathcal {E}} {\left ({{\mu _{A_{BCFLS-j}}^{RP}}}\right)^{{\mathsf{w}}_{wv-j}}}\\[2pt] +\,{\iota }\mathop {\prod }\limits _{j=1}^{\mathcal {E}} {\left ({{\mu _{A_{BCFLS-j}}^{IP}}}\right)^{{\mathsf{w}}_{wv-j}}},\\[2pt] -1+\mathop {\prod }\limits _{j=1}^{\mathcal {E}} {\left ({1+{\mu _{A_{BCFLS-j}}^{RN}}}\right)^{{\mathsf{w}}_{wv-j}}}\\[2pt] +\,{\iota }\left ({-1+\mathop {\prod }\limits _{j=1}^{\mathcal {E}} {\left ({1+{\mu _{A_{BCFLS-j}}^{RN}}}\right)^{{\mathsf{w}}_{wv-j}}}}\right) \end{matrix}}\right)\end{matrix}}\right)\\&\otimes \,\left ({\begin{matrix} {\dot {\acute {\text {S}}}_{\underline {z}{\left ({\frac {\gamma _{1}} {\underline {z}}}\right)^{{\mathsf{w}}_{wv-\mathcal {E}+1}}}}},\\[2pt] \left ({\begin{matrix} {\left ({{\mu _{A_{BCFLS-\mathcal {E}+1}}^{RP}}}\right)^{{\mathsf{w}}_{wv-\mathcal {E}+1}}}\\ +\,{\iota }{\left ({{\mu _{A_{BCFLS-\mathcal {E}+1}}^{IP}}}\right)^{{\mathsf{w}}_{wv-\mathcal {E}+1}}},\\ -1+{\left ({1+{\mu _{A_{BCFLS-\mathcal {E}+1}}^{RN}}}\right)^{{\mathsf{w}}_{wv-\mathcal {E}+1}}}\\ +\,{\iota } \left ({-1+{\left ({1+{\mu _{A_{BCFLS-\mathcal {E}+1}}^{IN}}}\right)^{{\mathsf{w}}_{wv-\mathcal {E}+1}}} }\right)\end{matrix}}\right)\end{matrix}}\right)\\[2pt]=&\left ({\begin{matrix} {\dot {\acute {\text {S}}}_{\underline {z}\mathop {\prod }_{j=1}^{\mathcal {E}+1} {\left ({\frac {\gamma _{j}}{\underline {z}}}\right)^{{\mathsf{w}}_{wv-j}}}}},\\[2pt] \left ({\begin{matrix} \mathop {\prod }\limits _{j=1}^{\mathcal {E}+1} {\left ({{\mu _{A_{BCFLS-j}}^{RP}}}\right)^{{\mathsf{w}}_{wv-j}}}\\[2pt] +\,{\iota }\mathop {\prod }\limits _{j=1}^{\mathcal {E}+1} {\left ({{\mu _{A_{BCFLS-j}}^{IP}}}\right)^{{\mathsf{w}}_{wv-j}}},\\[2pt] -1+\mathop {\prod }\limits _{j=1}^{\mathcal {E}+1}{\left ({1 +{\mu _{A_{BCFLS-j}}^{RN}}}\right)^{{\mathsf{w}}_{wv-j}}}\\[2pt] +\,{\iota }\left ({-1+\mathop {\prod }\limits _{j=1}^{\mathcal {E}+1}{\left ({1 +{\mu _{A_{BCFLS-j}}^{RN}}}\right)^{{\mathsf{w}}_{wv-j}}}}\right) \end{matrix}}\right) \end{matrix}}\right)\end{align*}
Moreover, the idempotency, monotonicity, and boundedness are satisfied by the diagnosed BCFLWG operators and are presented as follows
Idempotency: By considering the family of BCFLNs i.e.
, if{A_{BCFLS-j}}=\left ({{\dot {\acute {\text {S}}}_{\gamma _{j}}}, \left ({{\mu _{A_{BCFLS-j}}^{P}},\,\,{\mu _{A_{BCFLS-j}}^{N}}}\right)}\right)=\left ({{\dot {\acute {\text {S}}}_{\gamma _{j}}}, \left ({{\mu _{A_{BCFLS-j}}^{RP}}+{\iota }\,\,{\mu _{{A_{BCFLS}}-j}^{IP}},\,\,{\mu _{A_{BCFLS-j}}^{RN}}}+{{\iota }\,\,{\mu _{A_{BCFLS-j}}^{IN}}}\right)}\right),\,\,j=1,\,\,2,\ldots,\,\,n for all{A_{BCFLS-j}}={A_{BCFLS}} , thenj \begin{align*}&\hspace {-2pc}BCFLWG\left ({{A_{BCFLS-1}},{A_{BCFLS-2}},\ldots,{A_{BCFLS-n}}}\right) \\&\qquad \qquad \qquad \qquad \quad =\,{A_{BCFLS}}\tag{14}\end{align*} View Source\begin{align*}&\hspace {-2pc}BCFLWG\left ({{A_{BCFLS-1}},{A_{BCFLS-2}},\ldots,{A_{BCFLS-n}}}\right) \\&\qquad \qquad \qquad \qquad \quad =\,{A_{BCFLS}}\tag{14}\end{align*}
Monotonicity: By considering two families of BCFLNs i.e.
and{A_{BCFLS-j}}=\left ({{\dot {\acute {\text {S}}}_{\gamma _{j}}},\left ({{\mu _{A_{BCFLS-j}}^{P}},\,\,{\mu _{A_{BCFLS-j}}^{N}}}\right)}\right) =\left ({{\dot {\acute {\text {S}}}_{\gamma _{j}}},\left ({{\mu _{A_{BCFLS-j}}^{RP}}+{\iota } {\mu _{{A_{BCFLS}}-j}^{IP}}, {\mu _{A_{BCFLS-j}}^{RN}}}+{{\iota }\,\,{\mu _{A_{BCFLS-j}}^{IN}}}\right)}\right) if{A_{BCFLS-j}^{\prime }}=\left ({{\dot {\acute {\text {S}}}_{\gamma _{j}}},\left ({{\mu _{A_{BCFLS-j}^{\prime }}^{P}},} { {\mu _{A_{BCFLS-j}^{\prime }}^{N}}}\right)}\right)=\left ({{\dot {\acute {\text {S}}}_{\gamma _{j}}}, \left ({{\mu _{A_{BCFLS-j}^{\prime }}^{RP}} +{\iota }\,\,{\mu _{A_{BCFLS-j}^{\prime }}^{IP}},} {{\mu _{A_{BCFLS-j}^{\prime }}^{RN}} +{\iota }\,\,{\mu _{A_{BCFLS-j}^{\prime }}^{IN}}}\right)}\right),\,\,j=1,\,\,2,\ldots,\,\,n ,{\mu _{A_{BCFLS-j}}^{RP}}\leq {\mu _{A_{BCFLS-j}^{\prime }}^{RP}} ,{\mu _{A_{BCFLS-j}}^{IP}}\leq {\mu _{A_{BCFLS-j}^{\prime }}^{IP}} ,{\mu _{A_{BCFLS-j}}^{RN}}\leq {\mu _{A_{BCFLS-j}^{\prime }}^{RN}} then{\mu _{A_{BCFLS-j}}^{IN}}\leq {\mu _{A_{BCFLS-j}^{\prime }}^{IN}}\,\,{\forall }\,\,j \begin{align*}&\hspace {-2pc}BCFLWG\left ({{A_{BCFLS-1}},{A_{BCFLS-2}},\ldots,{A_{BCFLS-n}}}\right) \\\leq&BCFLWG\left ({{A_{BCFLS-1}^{\prime }},{A_{BCFLS-2}^{\prime }},\ldots,{A_{BCFLS-n}^{\prime }}}\right) \\{}\tag{15}\end{align*} View Source\begin{align*}&\hspace {-2pc}BCFLWG\left ({{A_{BCFLS-1}},{A_{BCFLS-2}},\ldots,{A_{BCFLS-n}}}\right) \\\leq&BCFLWG\left ({{A_{BCFLS-1}^{\prime }},{A_{BCFLS-2}^{\prime }},\ldots,{A_{BCFLS-n}^{\prime }}}\right) \\{}\tag{15}\end{align*}
Boundedness: By considering the family of BCFLNs i.e.
and suppose that{A_{BCFLS-j}}=\left ({{\dot {\acute {\text {S}}}_{\gamma _{j}}},\left ({{\mu _{A_{BCFLS-j}}^{P}}, {\mu _{A_{BCFLS-j}}^{N}}}\right)}\right)=\left ({{\dot {\acute {\text {S}}}_{\gamma _{j}}},} {\left ({{\mu _{A_{BCFLS-j}}^{RP}}+{\iota } {\mu _{{A_{BCFLS}}-j}^{IP}}, {\mu _{A_{BCFLS-j}}^{RN}}+{\iota } {\mu _{A_{BCFLS-j}}^{IN}}}\right)}\right), j=1,\,\,2,\ldots,\,\,n and\begin{align*} {A_{BCFLS}^{-}}=\left ({\begin{matrix}\mathop {\mathrm {min}}\limits _{j}\left \{{{\mu _{A_{BCFLS-j}}^{RP}}}\right \} +{\iota }~\mathop {\mathrm {min}}\limits _{j}\left \{{{\mu _{A_{BCFLS-j}}^{IP}}}\right \},\\ \mathop {\mathrm {max}}\limits _{j}\left \{{{\mu _{A_{BCFLS-j}}^{RN}}}\right \}+{\iota } \mathop {\mathrm {max}}\limits _{j}\left \{{{\mu _{A_{BCFLS-j}}^{IN}}}\right \}\end{matrix}}\right),\end{align*} View Source\begin{align*} {A_{BCFLS}^{-}}=\left ({\begin{matrix}\mathop {\mathrm {min}}\limits _{j}\left \{{{\mu _{A_{BCFLS-j}}^{RP}}}\right \} +{\iota }~\mathop {\mathrm {min}}\limits _{j}\left \{{{\mu _{A_{BCFLS-j}}^{IP}}}\right \},\\ \mathop {\mathrm {max}}\limits _{j}\left \{{{\mu _{A_{BCFLS-j}}^{RN}}}\right \}+{\iota } \mathop {\mathrm {max}}\limits _{j}\left \{{{\mu _{A_{BCFLS-j}}^{IN}}}\right \}\end{matrix}}\right),\end{align*}
then\begin{align*}{A_{BCFLS}^{+}}=\left ({\begin{matrix}\mathop {\mathrm {max}}\limits _{j}\left \{{{\mu _{A_{BCFLS-j}}^{RP}}}\right \} +{\iota }~\mathop {\mathrm {max}}\limits _{j}\left \{{{\mu _{A_{BCFLS-j}}^{IP}}}\right \},\\ \mathop {\mathrm {min}}\limits _{j}\left \{{{\mu _{A_{BCFLS-j}}^{RN}}}\right \}+{\iota } \mathop {\mathrm {min}}\limits _{j}\left \{{{\mu _{A_{BCFLS-j}}^{IN}}}\right \}\end{matrix}}\right),\end{align*} View Source\begin{align*}{A_{BCFLS}^{+}}=\left ({\begin{matrix}\mathop {\mathrm {max}}\limits _{j}\left \{{{\mu _{A_{BCFLS-j}}^{RP}}}\right \} +{\iota }~\mathop {\mathrm {max}}\limits _{j}\left \{{{\mu _{A_{BCFLS-j}}^{IP}}}\right \},\\ \mathop {\mathrm {min}}\limits _{j}\left \{{{\mu _{A_{BCFLS-j}}^{RN}}}\right \}+{\iota } \mathop {\mathrm {min}}\limits _{j}\left \{{{\mu _{A_{BCFLS-j}}^{IN}}}\right \}\end{matrix}}\right),\end{align*}
\begin{align*} {A_{BCFLS}^{-}}\leq&BCFLWG \\&\times \,\left ({{A_{BCFLS-1}},{A_{BCFLS-2}},\ldots,{A_{BCFLS-n}}}\right) \\\leq&{A_{BCFLS}^{+}}\tag{16}\end{align*} View Source\begin{align*} {A_{BCFLS}^{-}}\leq&BCFLWG \\&\times \,\left ({{A_{BCFLS-1}},{A_{BCFLS-2}},\ldots,{A_{BCFLS-n}}}\right) \\\leq&{A_{BCFLS}^{+}}\tag{16}\end{align*}
Application (Multi-Attribute Decision-Making)
The progressive beginning of enormous information technology and the consistent development of different work procedure advancements has carried new aspects. The coming of the internet of things and other associated gadgets has investigated every possibility of affecting supply chain usefulness on an essential level. It has prodded the advancement of digital transformation through all parts of supply chain tasks involving warehousing, obtainment, and support. Digitization has addressed all parts of organizations together, on a very basic level varying how you work and convey worth to the clients. Likewise, a social change expects associations to ceaselessly stir things up, and try and become familiar with disappointment. Digital transformation of the supply chain is not just about carrying out innovation, it is tied in with utilizing novel technologies to generally transform how your business works and conveys worth to the clients. Following are the major benefits of the digital supply chain transformation
Accelerates innovation: The single aim of all digitalization procedures is innovation. This development over the classical method of the supply chain will assist with reinforcing the organization’s plan of action and simultaneously, assist construct associations with providers but also customers.
Better decision-making: The organizations would take faster and quicker decisions for every particular function if digital technologies are involved in the supply chain. Additionally, the organizations can assess the performance precisely and proficiently by aggregating exchanges and accessible data at the large scale level, consequently, taking the right decisions to prevent contortions made by normal costing.
End-to-end customer engagement: Digitalization in the supply chain would enhance the clients’ engagement in his excursion. For instance, after giving the order, the provider’s tracking system would assist the client to locate the position of the provider which will guarantee that clients have a good sense of safety and control.
Organizational flexibility: A significant advantage for an association when it unifies specific explicit capabilities is higher worth through better quality and efficiency.
Increases automation: Automation decides the most suitable transportation mode transporter, and timetable while thinking about time speed needs and different components.
Let us consider
Step 1:
The information provided by the decision analyst can be of two types i.e. benefit and cost type. If it is benefit type so there is no such requirement for normalizing the information but if it is cost type then one has to normalize the information by employing the following formula to get a normalized DM matrix.
where,\begin{align*} {N_{BCFLS}}= \begin{cases} \left (\dot {\acute {\text {S}}}_{\gamma \left ({\mathsf{x}}\right)},\left ({\mu _{A_{BCFLS}}^{P}} \left ({\mathsf{x}}\right), {\mu _{A_{BCFLS}}^{N}}\left ({\mathsf{x}}\right)\right)\right)\\[0.2pc] \qquad for~benefit~type\\ \left (\dot {\acute {\text {S}}}_{\gamma \left ({\mathsf{x}}\right)},\left ({\mu _{A_{BCFLS}}^{P}} \left ({\mathsf{x}}\right), {\mu _{A_{BCFLS}}^{N}}\left ({\mathsf{x}}\right)\right)^{C}\right)\\[0.2pc] \qquad for~cost~type\end{cases}\tag{17}\end{align*} View Source\begin{align*} {N_{BCFLS}}= \begin{cases} \left (\dot {\acute {\text {S}}}_{\gamma \left ({\mathsf{x}}\right)},\left ({\mu _{A_{BCFLS}}^{P}} \left ({\mathsf{x}}\right), {\mu _{A_{BCFLS}}^{N}}\left ({\mathsf{x}}\right)\right)\right)\\[0.2pc] \qquad for~benefit~type\\ \left (\dot {\acute {\text {S}}}_{\gamma \left ({\mathsf{x}}\right)},\left ({\mu _{A_{BCFLS}}^{P}} \left ({\mathsf{x}}\right), {\mu _{A_{BCFLS}}^{N}}\left ({\mathsf{x}}\right)\right)^{C}\right)\\[0.2pc] \qquad for~cost~type\end{cases}\tag{17}\end{align*}
\begin{align*} {\left ({{\mu _{A_{BCFLS}}^{P}}\left ({\mathsf{x}} \right),~{\mu _{A_{BCFLS}}^{N}}\left ({\mathsf{x}} \right)}\right)^{C}} =\left ({\begin{matrix} 1-{\mu _{A_{BCFLS}}^{RP}}\left ({\mathsf{x}} \right)\\[0.3pc] +{\iota }\left ({1-{\mu _{A_{BCFLS}}^{IP}}\left ({\mathsf{x}} \right)}\right),\\[0.4pc] -1-{\mu _{A_{BCFLS}}^{RN}}\left ({\mathsf{x}} \right)\\[0.2pc] +{\iota }\left ({-1-{\mu _{A_{BCFLS}}^{IN}}\left ({\mathsf{x}} \right)}\right) \end{matrix}}\right).\end{align*} View Source\begin{align*} {\left ({{\mu _{A_{BCFLS}}^{P}}\left ({\mathsf{x}} \right),~{\mu _{A_{BCFLS}}^{N}}\left ({\mathsf{x}} \right)}\right)^{C}} =\left ({\begin{matrix} 1-{\mu _{A_{BCFLS}}^{RP}}\left ({\mathsf{x}} \right)\\[0.3pc] +{\iota }\left ({1-{\mu _{A_{BCFLS}}^{IP}}\left ({\mathsf{x}} \right)}\right),\\[0.4pc] -1-{\mu _{A_{BCFLS}}^{RN}}\left ({\mathsf{x}} \right)\\[0.2pc] +{\iota }\left ({-1-{\mu _{A_{BCFLS}}^{IN}}\left ({\mathsf{x}} \right)}\right) \end{matrix}}\right).\end{align*}
Step 2:
If the information is benefit type then employ introduced AOs for BCFLNs such as BCFLWA and BCFLWG operators to achieve the aggregated values of the DM matrix and if the information is cost type then employ introduced AOs for BCFLNs to achieve the aggregated values of normalized DM matrix.
Step 3:
To achieve SV of the aggregated values employing Def (7). In case the SV of any two aggregated values is similar, then find the accuracy value (AV) by employing Def (8).
Step 4:
Rank the alternatives by noticing their SVs or AVs.
To display the practical use of this MADM technique and its usefulness in the prioritization of strategies of digital transformation in the supply chain we present the following numerical example.
A. Numerical Example
Suppose an organization wants to transform its supply chain from conventional to digital. A technology expert provided 4 strategies for the supply chain digital transformation to the organization i.e.
Now to obtain the finest strategy fordigital transformation of the supply chain, we utilize the introduced MADM as follows
Step 1:
The information provided by the decision analyst is benefit type so there is no requirement for normalization.
Step 2:
Employed the introduced BCFLWA and BCFLWG operators to achieve the aggregated values portrayed in Table 2.
Step 3:
The achieved SV of the aggregated values is depicted in Table 3.
Step 4:
Rank the alternatives by noticing their SVs or AVs are depicted in Table 4.
According to the ranking depicted in Table 4,
For displaying the dominance and significance of the propounded work we do a comparison of the propounded work with certain prevailing notions such as Wang et al. [36], Lu et al. [38], and Mahmood et al. [32]. Let us consider the information portrayed in Table 1 and try to solve this data by propounded technique and operators and by MADM technique and operators established by Wang et al. [26], Lu et al. [38], and Mahmood et al. [32]. Thus, Table 5 contains the outcomes achieved by employing these approaches and operators and Figure 2 is the graphical interpretation of Table 5. Table 6 contains the ranking.
The prevailing notions Wang et al. [36], Lu et al. [38], and Mahmood et al. [32] are unsuccessful in providing any sort of outcome as portrayed in Tables 5 and 6. Wang et al. [36] are unsuccessful due to lack of
Conclusion
In this manuscript, we fused two different notions that is BCFS and linguistic set (LS) to establish the notion of BCFLS. We also established fundamental operational laws, score, and accuracy functions in the environment of BCFLS. The notion of BCFLS is the modification of various notions such as FS, fuzzy LS (FLS), BFS, bipolar FLS, CFS, complex FLS, and BCFS. Further, in this manuscript, we established average and geometric AOs in the setting of BCFLS such as BCFLWA and BCFLWG operators along with their idempotency, boundedness, and monotonicity properties. Based on these scrutinized AOs, we established a MADM approach in the environment of our interpreted BCFLS and presented a numerical example of the prioritization of the digital transformation of the supply chain to show the utilization and benefits of the scrutinized AOs and MADM in real-life dilemmas. Digitization has addressed all parts of organizations together with supply chain management. A lot of organizations want to get the advantages of digitalization, particularly in the supply chain. But the biggest problem, the organizations are facing is the ambiguities, i.e. how to select and evaluate the best strategy of the SCDT, on which criteria or attributes they can assess the strategies of SCDT, etc. MADM procedure is the finest technique to evaluate and find out the finest strategy of the SCDT. Thus, through the propounded MADM technique and operators we solved a numerical example of SCDT and found the finest strategy of the organization. Furthermore, to display the advantages and supremacy of the established work, we compared our work with certain current work. The established AOs and MADM mechanism has certain limitations that as the proposed work can’t deal with the information in the setting of the bipolar complex fuzzy uncertain linguistic set, bipolar complex fuzzy 2-tuple linguistic set, bipolar complex fuzzy soft set (BCFSS), etc.
A. Future Direction
In the future, we are thinking to expand this work to various notions where the proposed work is not applicable such as bipolar complex fuzzy uncertain linguistic set, bipolar complex fuzzy 2-tuple linguistic set, BCFSS [34], complex bipolar intuitionistic FS [39], complex bipolar picture FS [40] complex hesitant FS [41], [42], picture FS [43], and picture fuzzy soft set [44].