Loading [MathJax]/extensions/MathMenu.js
Jan Faigl - IEEE Xplore Author Profile

Showing 1-25 of 92 results

Filter Results

Show

Results

Agile trajectory planning can improve the efficiency of multi-rotor Uncrewed Aerial Vehicles (UAVs) in scenarios with combined task-oriented and kinematic trajectory planning, such as monitoring spatio-temporal phenomena or intercepting dynamic targets. Agile planning using existing non-linear model predictive control methods is limited by the number of planning steps as it becomes increasingly co...Show More
In this paper, we address the sensitivity of the 3D LiDAR-based localization to environmental structural ambiguity. Although existing approaches employ additional sensors, such as cameras and inertial measurement units, to account for such ambiguities, multi-sensor localization is still an open problem. Limitations are from the need to tune fusion parameters to compensate for limited ambiguity det...Show More
In this paper, we focus on improving planning efficiency for ground vehicles in navigation and exploration tasks where the environment is unknown or partially known, leading to frequent updates of the navigational goal as new sensory information is acquired. Asymptotically optimal motion planners like RRT* or FMT* can be used to plan the sequence of actions the robot can follow to achieve its curr...Show More
Mobile robots operating in convoys have a limited view of the terrain to be traversed if it is occluded by the preceding vehicle. Furthermore, the preceding vehicle might change the terrain geometry and eventually significantly alter its traversability by driving over the terrain. When the following vehicles do not consider such changes, they can use spurious terrain appearance and geometry to dec...Show More
In the paper, we address wireless communication infrastructure building by relay placement based on approaches utilized in wireless network sensors. The problem is motivated by search and inspection missions with mobile robots, where known sensing ranges may be exploited. We investigate the relay placement, establishing network connectivity to support robust food-based communication routing. The p...Show More
Autonomous navigation and multi-robot exploration framework for ground robots are key parts of the robotic system deployed by the team CTU-CRAS-NORLAB in the final event of the Subterranean (SubT) Challenge organized by the Defense Advanced Research Projects Agency (DARPA) in 2021. The SubT Challenge aimed to advance technologies related to search-and-rescue missions with multi-robot systems in un...Show More
An in-flight loss of thrust poses a risk to the aircraft, its passengers, and people on the ground. When a loss of thrust happens, the (auto)pilot is forced to perform an emergency landing, possibly toward one of the reachable airports. If none of the airports is reachable, the aircraft is forced to land at another location, which can be risky in urban environments. In this work, we present a gene...Show More
This paper presents a novel formulation of motion planning for multi-legged walking robots. In the proposed method, a single-step motion is formulated as a nonlinear equation problem (NLE): including kinematic, stability, and collision constraints. For the given start and goal configurations, the robot's path is parametrized as Bézier curve in the configuration space. The resulting NLE is solved u...Show More
In this paper, we present a novel improvement heuristic to address the Close Enough Traveling Salesman Problem in environments with obstacles ($\text{CETSP}_{\text{obs}}$). The $\text{CETSP}_{\text{obs}}$ is a variant of the Traveling Salesman Problem (TSP), where the goal is to find a sequence of visits to given disk-shaped regions together with the points of visits to the regions. We address cha...Show More
In this paper, we address robot localization using Simultaneous Localization and Mapping (SLAM) with Light Detection and Ranging (LiDAR) perception enhanced by visual odometry in scenarios where laser scan matching can be ambiguous because of a lack of sufficient features in the scan. We propose a Graph-based SLAM approach that benefits from fusing data from multiple types of sensors to overcome t...Show More
Repeated exploration of a water surface to detect objects of interest and their subsequent monitoring is important in search-and-rescue or ocean clean-up operations. Since the location of any detected object is dynamic, we propose to address the combined surface exploration and monitoring of the detected objects by modeling spatio-temporal reward states and coordinating a team of vehicles to colle...Show More
In this letter, we address path planning for the quasi-static locomotion of a multi-legged walking robot on terrains with limited available footholds, such as passing a water stream over rocks. The task is to find a feasible sequence of steps to navigate the robot in environments where precise foot placement and order of the leg movements are necessary for successful traversal. A finite set of the...Show More
In this paper, we propose a novel dynamic gait controller for the repetitive behavior of soft robot manipulators performing routine tasks. Compliance with soft robots is advantageous when the robot interacts with living organisms and other fragile objects. However, predicting and controlling repetitive behavior is challenging because of hysteresis and non-linear dynamics governing the interactions...Show More
Complex underground environments such as tunnels, underground urban settings, and natural caves present significant challenges for first responders in the event of an emergency. Each of these subdomains has unique hazards while sharing some common elements. Apart from challenging terrain features and aspects such as smoke and dust, communications in these environments are often severely degraded a...Show More
Personal air transportation on short distances, so-called Urban Air Mobility (UAM), is a trend in modern aviation that raises new challenges as flying in urban areas at low altitudes induces an additional risk to people and properties on the ground. Risk-aware trajectory planning can mitigate the risk by detouring and flying over less populated and thus less risky areas. Existing risk-aware trajec...Show More
In this work-in-progress report, we present experimental results of lightweight learning-based leg-contact detection methods for a small hexapod walking robot with position feed- back only. The detection of the leg contact with the surface is addressed as anomaly detection using predicted and measured positions of the leg’s joints in the leg swing phase. A polynomial regressor and three-layer neur...Show More
This paper concerns fault-tolerant power transmission line inspection planning as a generalization of the multiple traveling salesmen problem. The addressed inspection planning problem is formulated as a single-depot multiple-vehicle scenario, where the inspection vehicles are constrained by the battery budget limiting their inspection time. The inspection vehicle is assumed to be an autonomous mu...Show More
The terrain traversal abilities of multi-legged walking robots are affected by gaits, the walking patterns that enable adaptation to various operational environments. Fast and low-set gaits are suited to flat ground, while cautious and highset gaits enable traversing rough areas. A suitable gait can be selected using prior experience with a particular terrain type. However, experience alone is ins...Show More
We consider the problem of finding collision-free paths for curvature-constrained systems in the presence of obstacles while minimizing execution time. Specifically, we focus on the setting where a planar system can travel at some range of speeds with unbounded acceleration. This setting can model many systems, such as fixed-wing drones. Unfortunately, planning for such systems might require evalu...Show More
Dubins tours represent a solution of the Dubins traveling salesman problem (DTSP) that is a variant of the optimization routing problem to determine a curvature-constrained shortest path to visit a set of locations such that the path is feasible for Dubins vehicle, which moves only forward and has a limited turning radius. The DTSP combines the NP-hard combinatorial optimization to determine the o...Show More
This paper presents a novel approach to the multigoal trajectory planning for vehicles with curvature-constrained trajectories such as fixed-wing aircraft. In the existing formulation called the Dubins Traveling Salesman Problem (DTSP), the vehicle speed is assumed to be constant over the whole trajectory, and that does not allow adaptation of the turning radius of the trajectory between the targe...Show More
This paper presents a novel non-linear programming formulation to find the shortest 3D Dubins path with a limited pitch angle. Such a path is suitable for fix-wing aircraft because it satisfies both the minimum turning radius and pitch angle constraints, and thus it is a feasible and smooth path in the 3D space. The proposed method utilizes the existing decoupled approach as an initial solution an...Show More
This paper concerns a mapping framework for multi-robot exploration of underground environments with only very limited communication available. We focus on multi-robot map building and coordination to explore large areas with real-time planning to long distances. The considered communication can broadcast only 100 B/s, and therefore, we propose coordination planning using two terrain models. The f...Show More
This paper presents a gait-free motion planning approach for quasi-static walking of hexapod walking robots on terrains with limited available footholds. The proposed approach avoids using a prescribed gait pattern allowing an arbitrary sequence of leg swings. Furthermore, it is allowed that some legs do not need to be placed on the terrain for an extended duration. The proposed method is based on...Show More