Machine unlearning aims to remove points from the training dataset of a machine learning model after training: e.g., when a user requests their data to be deleted. While many unlearning methods have been proposed, none of them enable users to audit the procedure. Furthermore, recent work shows a user is unable to verify whether their data was unlearnt from an inspection of the model parameter alon...Show More
AI-generated media has become a threat to our digital society as we know it. Forgeries can be created automatically and on a large scale based on publicly available technologies. Recognizing this challenge, academics and practitioners have proposed a multitude of automatic detection strategies to detect such artificial media. However, in contrast to these technological advances, the human percepti...Show More
Despite remarkable improvements, automatic speech recognition is susceptible to adversarial perturbations. Compared to standard machine learning architectures, these attacks are significantly more challenging, especially since the inputs to a speech recognition system are time series that contain both acoustic and linguistic properties of speech. Extracting all recognition-relevant information req...Show More