Fine-Grained Classification via Categorical Memory Networks | IEEE Journals & Magazine | IEEE Xplore

Fine-Grained Classification via Categorical Memory Networks


Abstract:

Motivated by the desire to exploit patterns shared across classes, we present a simple yet effective class-specific memory module for fine-grained feature learning. The m...Show More

Abstract:

Motivated by the desire to exploit patterns shared across classes, we present a simple yet effective class-specific memory module for fine-grained feature learning. The memory module stores the prototypical feature representation for each category as a moving average. We hypothesize that the combination of similarities with respect to each category is itself a useful discriminative cue. To detect these similarities, we use attention as a querying mechanism. The attention scores with respect to each class prototype are used as weights to combine prototypes via weighted sum, producing a uniquely tailored response feature representation for a given input. The original and response features are combined to produce an augmented feature for classification. We integrate our class-specific memory module into a standard convolutional neural network, yielding a Categorical Memory Network. Our memory module significantly improves accuracy over baseline CNNs, achieving competitive accuracy with state-of-the-art methods on four benchmarks, including CUB-200-2011, Stanford Cars, FGVC Aircraft, and NABirds.
Published in: IEEE Transactions on Image Processing ( Volume: 31)
Page(s): 4186 - 4196
Date of Publication: 14 June 2022

ISSN Information:

PubMed ID: 35700253

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.