Abstract:
In the past years, RGB-based deepfake detection has shown notable progress thanks to the development of effective deep neural networks. However, the performance of deepfa...Show MoreMetadata
Abstract:
In the past years, RGB-based deepfake detection has shown notable progress thanks to the development of effective deep neural networks. However, the performance of deepfake detectors remains primarily dependent on the quality of the forged content and the level of artifacts introduced by the forgery method. To detect these artifacts, it is often necessary to separate and analyze the frequency components of an image. In this context, we propose to utilize the high-frequency components of color images by introducing an end-to-end trainable module that (a) extracts features from high-frequency components and (b) fuses them with the features of the RGB input. The module not only exploits the high-frequency anomalies present in manipulated images but also can be used with most RGB-based deepfake detectors. Experimental results show that the proposed approach boosts the performance of state-of-the-art networks, such as XceptionNet and EfficientNet, on a challenging deepfake dataset.
Date of Conference: 06-08 October 2021
Date Added to IEEE Xplore: 16 March 2022
ISBN Information: