Abstract:
Polymer memristors with good flexibility are promising electronic devices for edge computing paradigms in wearable electronics. However, most reported works present nonvo...Show MoreMetadata
Abstract:
Polymer memristors with good flexibility are promising electronic devices for edge computing paradigms in wearable electronics. However, most reported works present nonvolatile devices, which are suitable for applications in resistive random-access memory or artificial synapse. The volatile devices, which are indispensable in artificial neuron circuits, have rarely been reported, as the resistive switching property of organic devices is usually unstable in volatile devices. Moreover, most reported works use polymers in a way that is not compatible with traditional memristor fabrication technology, which limits the further applications of polymer memristors to large-scale neuromorphic circuits. In this letter, an Ag/Nafion/Au threshold switching memristor was fabricated via electrohydrodynamic printing technology and employed as a core of a leaky integrate and fire neuron circuit. The threshold switching memristor shows excel device size, good endurance, good device-to-device and cycle-to-cycle uniformity, flexibility, and stability at high temperatures. The combination of electrohydrodynamic printing technology and polymer memristor is promising in fast memristor production and largescale edge-computation network circuits.
Published in: IEEE Electron Device Letters ( Volume: 43, Issue: 1, January 2022)
Funding Agency:
References is not available for this document.
Select All
1.
W. Zhang, B. Gao, J. Tang, P. Yao, S. Yu, M.-F. Chang, H.-J. Yoo, H. Qian, and H. Wu, “Neuro-inspired computing chips,” Nature Electron., vol. 3, no. 7, pp. 371–382, Jul. 2020, doi: 10.1038/s41928-020-0435-7.
2.
J. S. Najem, G. J. Taylor, R. J. Weiss, M. S. Hasan, G. Rose, C. D. Schuman, A. Belianinov, C. P. Collier, and S. A. Sarles, “Memristive ion channel-doped biomembranes as synaptic mimics,” ACS Nano, vol. 12, no. 5, pp. 4702–4711, Mar. 2018, doi: 10.1021/acsnano.8b01282.
3.
B. Zhang, W. Chen, J. Zeng, F. Fan, J. Gu, X. Chen, L. Yan, G. Xie, S. Liu, Q. Yan, S. J. Baik, Z.-G. Zhang, W. Chen, J. Hou, M. E. El-Khouly, Z. Zhang, G. Liu, and Y. Chen, “90% yield production of polymer nano-memristor for in-memory computing,” Nature Commun., vol. 12, no. 1, Mar. 2021, Art. no. 1984, doi: 10.1038/s41467-021-22243-8.
4.
P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang, W. Zhang, J. J. Yang, and H. Qian, “Fully hardware-implemented memristor convolutional neural network,” Nature, vol. 577, no. 7792, pp. 641–646, 2020, doi: 10.1038/s41586-020-1942-4.
5.
Q. Xia and J. J. Yang, “Memristive crossbar arrays for brain-inspired computing,” Nature Mater., vol. 18, no. 4, pp. 309–323, 2019, doi: 10.1038/s41563-019-0291-x.
6.
R. Yang, “Review of resistive switching mechanisms for memristive neuromorphic devices,” Chin. Phys. B, vol. 29, no. 9, Sep. 2020, Art. no. 097305, doi: 10.1088/1674-1056/aba9c7.
7.
Q. Duan, Z. Jing, X. Zou, Y. Wang, K. Yang, T. Zhang, S. Wu, R. Huang, and Y. Yang, “Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks,” Nature Commun., vol. 11, no. 1, p. 3399, Jul. 2020, doi: 10.1038/s41467-020-17215-3.
8.
R. Yang, H. Huang, and X. Guo, “Memristive synapses and neurons for bioinspired computing,” Adv. Electron. Mater., vol. 5, no. 9, Aug. 2019, Art. no. 1900287, doi: 10.1002/aelm.201900287.
9.
K. Wang, Q. Hu, B. Gao, Q. Lin, F.-W. Zhuge, D.-Y. Zhang, L. Wang, Y.-H. He, R. H. Scheicher, H. Tong, and X.-S. Miao, “Threshold switching memristor-based stochastic neurons for probabilistic computing,” Mater. Horizons, vol. 8, no. 2, pp. 619–629, Feb. 2021, doi: 10.1039/D0MH01759K.
10.
Y. Wang, L. Yin, Y. Bai, S. Liu, L. Wang, Y. Zhou, C. Hou, Z. Yang, H. Wu, J. Ma, Y. Shen, P. Deng, S. Zhang, T. Duan, Z. Li, J. Ren, L. Xiao, Z. Yin, N. Lu, and Y. Huang, “Electrically compensated, tattoo-like electrodes for epidermal electrophysiology at scale,” Sci. Adv., vol. 6, no. 43, Oct. 2020, Art. no. eabd0996, doi: 10.1126/sciadv.abd0996.
11.
W. Gao, S. Emaminejad, H. Y. Y. Nyein, S. Challa, K. Chen, A. Peck, H. M. Fahad, H. Ota, H. Shiraki, D. Kiriya, D.-H. Lien, G. A. Brooks, R. W. Davis, and A. Javey, “Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis,” Nature, vol. 529, pp. 509–514, Jan. 2016, doi: 10.1038/nature16521.
12.
Y. Huang, C. Zhu, W. Xiong, Y. Wang, Y. Jiang, L. Qiu, D. Guo, C. Hou, S. Jiang, Z. Yang, B. Wang, L. Wang, and Z. Yin, “Flexible smart sensing skin for ‘fly-by-feel’ morphing aircraft,” Sci. China Technol. Sci., 2021, doi: 10.1007/s11431-020-1793-0.
13.
Y. J. Park, B. K. Sharma, S. M. Shinde, M.-S. Kim, B. Jang, J.-H. Kim, and J.-H. Ahn, “All MoS 2 -based large area, skin-attachable active-matrix tactile sensor,” ACS Nano, vol. 13, no. 3, pp. 3023–3030, Mar. 2019, doi: 10.1021/acsnano.8b07995.
14.
S. Wang, J. Xu, W. Wang, G.-J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S.-K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. H. Tok, and Z. Bao, “Skin electronics from scalable fabrication of an intrinsically stretchable transistor array,” Nature, vol. 555, no. 7694, pp. 83–88, 2018, doi: 10.1038/nature25494.
15.
M. M. Rehman, B.-S. Yang, Y.-J. Yang, K. S. Karimov, and K. H. Choi, “Effect of device structure on the resistive switching characteristics of organic polymers fabricated through all printed technology,” Current Appl. Phys., vol. 17, no. 4, pp. 533–540, Apr. 2017, doi: 10.1016/j.cap.2017.01.023.
16.
S. Ali, J. Bae, C. H. Lee, S. Shin, and N. P. Kobayashi, “Ultra-low power non-volatile resistive crossbar memory based on pull up resistors,” Organic Electron., vol. 41, pp. 73–78, Feb. 2017, doi: 10.1016/j.orgel.2016.12.007.
17.
Q. Lin, S. Hao, W. Hu, M. Wang, Z. Zang, L. Zhu, J. Du, and X. Tang, “Human hair keratin for physically transient resistive switching memory devices,” J. Mater. Chem. C, vol. 7, no. 11, pp. 3315–3321, Mar. 2019, doi: 10.1039/C8TC05334K.
18.
M.-K. Kim and J.-S. Lee, “Short-term plasticity and long-term potentiation in artificial biosynapses with diffusive dynamics,” ACS Nano, vol. 12, no. 2, pp. 1680–1687, Jan. 2018, doi: 10.1021/acsnano.7b08331.
19.
Y. Choi, S. Oh, C. Qian, J.-H. Park, and J. H. Cho, “Vertical organic synapse expandable to 3D crossbar array,” Nature Commun., vol. 11, no. 1, pp. 1–9, Sep. 2020, doi: 10.1038/s41467-020-17850-w.
20.
J.-Q. Yang, L.-Y. Ting, R. Wang, J.-Y. Mao, Y. Ren, C.-L. Chang, C.-M. Yeh, H.-H. Chou, Y. Zhou, and S.-T. Han, “Fluorenone/carbazole based bipolar small molecules for non-volatile memory devices,” Organic Electron., vol. 78, Mar. 2020, Art. no. 105584, doi: 10.1016/j.orgel.2019.105584.
21.
Z. Lv, Q. Hu, Z. Xu, J. Wang, Z. Chen, Y. Wang, M. Chen, K. Zhou, Y. Zhou, and S. Han, “Organic memristor utilizing copper phthalocyanine nanowires with infrared response and cation regulating properties,” Adv. Electron. Mater., vol. 5, no. 4, Apr. 2019, Art. no. 1800793, doi: 10.1002/aelm.201800793.
22.
S. Goswami, A. J. Matula, S. P. Rath, S. Hedström, S. Saha, M. Annamalai, D. Sengupta, A. Patra, S. Ghosh, H. Jani, S. Sarkar, M. R. Motapothula, C. A. Nijhuis, J. Martin, S. Goswami, V. S. Batista, and T. Venkatesan, “Robust resistive memory devices using solution-processable metal-coordinated azo aromatics,” Nature Mater., vol. 16, pp. 1216–1224, Oct. 2017, doi: 10.1038/nmat5009.
23.
Q. Wang, G. Zhang, H. Zhang, Y. Duan, Z. Yin, and Y. Huang, “High-resolution, flexible, and full-color perovskite image photodetector via electrohydrodynamic printing of ionic-liquid-based ink,” Adv. Funct. Mater., vol. 31, no. 28, Apr. 2021, Art. no. 2100857, doi: 10.1002/adfm.202100857.
24.
M. S. Onses, E. Sutanto, P. M. Ferreira, A. G. Alleyne, and J. A. Rogers, “Mechanisms, capabilities, and applications of high-resolution electrohydrodynamic jet printing,” Small, vol. 11, no. 34, pp. 4237–4266, Sep. 2015, doi: 10.1002/smll.201500593.
25.
K. Schmidt-Rohr and Q. Chen, “Parallel cylindrical water nanochannels in Nafion fuel-cell membranes,” Nature Mater., vol. 7, no. 1, pp. 75–83, Jan. 2008, doi: 10.1038/nmat2074.
26.
T. Tsuneda, “Fenton reaction mechanism generating no OH radicals in Nafion membrane decomposition,” Sci. Rep., vol. 10, no. 1, Oct. 2020, Art. no. 18144, doi: 10.1038/s41598-020-74646-0.
27.
M. P. Jayakrishnan, A. Vena, A. Meghit, B. Sorli, and E. Perret, “Nafion-based fully passive solid-state conductive bridging RF switch,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 12, pp. 1104–1106, Dec. 2017, doi: 10.1109/LMWC.2017.2764741.
28.
Y. van de Burgt, A. Melianas, S. T. Keene, G. Malliaras, and A. Salleo, “Organic electronics for neuromorphic computing,” Nature Electron., vol. 1, no. 7, pp. 386–397, Jul. 2018, doi: 10.1038/s41928-018-0103-3.
29.
X.-D. Huang, Y. Li, H.-Y. Li, K.-H. Xue, X. Wang, and X.-S. Miao, “Forming-free, fast, uniform, and high endurance resistive switching from cryogenic to high temperatures in W/AlO x /Al 2 O 3 /Pt bilayer memristor,” IEEE Electron Device Lett., vol. 41, no. 4, pp. 549–552, Apr. 2020, doi: 10.1109/LED.2020.2977397.
30.
B. R. Matos, M. A. Dresch, E. I. Santiago, L. P. R. Moraes, D. J. Carastan, J. Schoenmaker, I. A. Velasco-Davalos, A. Ruediger, A. C. Tavares, and F. C. Fonseca, “Nafion membranes annealed at high temperature and controlled humidity: Structure, conductivity, and fuel cell performance,” Electrochim. Acta, vol. 196, pp. 110–117, Apr. 2016, doi: 10.1016/j.electacta.2016.02.125.