Abstract:
Robust and accurate global 6DoF localization is essential for many applications, i.e., augmented reality and autonomous driving. Most existing 6DoF visual localization ap...Show MoreMetadata
Abstract:
Robust and accurate global 6DoF localization is essential for many applications, i.e., augmented reality and autonomous driving. Most existing 6DoF visual localization approaches need to build a dense texture model in advance, which is computationally extensive and almost infeasible in the global range. In this work, we propose BDLoc, a hierarchical global localization framework via the 2.5D building map, which is able to estimate the accurate pose of the query street-view image without using detailed dense 3D model and texture information. Specifically speaking, we first extract the 3D building information from the street-view image and surrounding 2.5D building map, and then solve a coarse relative pose by local to global registration. In order to improve the feature extraction, we propose a novel SPG-Net which is able to capture both local and global features. Finally, an iterative semantic alignment is applied to obtain a finner result with the differentiable rendering and the cross-view semantic constraint. Except for a coarse longitude and latitude from GPS, BDLoc doesn’t need any additional information like altitude and orientation that are necessary for many previous works. We also create a large dataset to explore the performance of the 2.5D map-based localization task. Extensive experiments demonstrate the superior performance of our method.
Date of Conference: 04-08 October 2021
Date Added to IEEE Xplore: 01 November 2021
ISBN Information:
Print on Demand(PoD) ISSN: 1554-7868