Loading [MathJax]/extensions/MathMenu.js
Temporal-Difference Spatial Sampling and Aggregating Graph Neural Network for Crowd Flow Forecasting | IEEE Conference Publication | IEEE Xplore

Temporal-Difference Spatial Sampling and Aggregating Graph Neural Network for Crowd Flow Forecasting


Abstract:

With the development of traffic demand management, crowd flow forecasting arouse increasing interest. In order to tackle this spatial-temporal prediction problem, GNN (Gr...Show More

Abstract:

With the development of traffic demand management, crowd flow forecasting arouse increasing interest. In order to tackle this spatial-temporal prediction problem, GNN (Graph Neural Networks) have been recently employed to model spatial dependencies, and usually spatial graphs are constructed based on geodetic distances or direct connections between nodes. However, it might be insufficient for spatial graphs to model real dependencies because they neglect spatial-temporal correlations. In this paper, a novel Temporal-Difference Spatial Sampling and Aggregating graph neural network (TDSSA) is proposed to model spatial-temporal dependencies. Firstly, a new sub-sparse spatial-temporal graph is constructed to represent spatial-temporal relationships among different nodes, then a TDSSA block is designed to extract features by spatial sampling and aggregating, and difference is utilized in TDSSA blocks to exploit temporal trend and increase robustness. Experiments show that the proposed method outperforms baseline methods.
Date of Conference: 15 July 2021 - 15 August 2021
Date Added to IEEE Xplore: 22 September 2021
ISBN Information:
Conference Location: Beijing, China

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.