Abstract:
Maintaining population diversity is an important task in the multimodal multi-objective optimization. Although the zoning search (ZS) can improve the diversity in the dec...Show MoreMetadata
Abstract:
Maintaining population diversity is an important task in the multimodal multi-objective optimization. Although the zoning search (ZS) can improve the diversity in the decision space, assigning the same computational costs to each search subspace may be wasteful when computational resources are limited, especially on imbalanced problems. To alleviate the above-mentioned issue, a zoning search with adaptive resource allocating (ZS-ARA) method is proposed in the current study. In the proposed ZS-ARA, the entire search space is divided into many subspaces to preserve the diversity in the decision space and to reduce the problem complexity. Moreover, the computational resources can be automatically allocated among all the subspaces. The ZS-ARA is compared with seven algorithms on two different types of multimodal multi-objective problems (MMOPs), namely, balanced and imbalanced MMOPs. The results indicate that, similarly to the ZS, the ZS-ARA achieves high performance with the balanced MMOPs. Also, it can greatly assist a “regular” algorithm in improving its performance on the imbalanced MMOPs, and is capable of allocating the limited computational resources dynamically.
Published in: IEEE/CAA Journal of Automatica Sinica ( Volume: 8, Issue: 6, June 2021)