Abstract:
Robotic painting has been a subject of interest among both artists and roboticists since the 1970s. Researchers and interdisciplinary artists have employed various painti...Show MoreMetadata
Abstract:
Robotic painting has been a subject of interest among both artists and roboticists since the 1970s. Researchers and interdisciplinary artists have employed various painting techniques and human-robot collaboration models to create visual mediums on canvas. One of the challenges of robotic painting is to apply a desired artistic style to the painting. Style transfer techniques with machine learning models have helped us address this challenge with the visual style of a specific painting. However, other manual elements of style, i.e., painting techniques and brushstrokes of an artist, have not been fully addressed.We propose a method to integrate an artistic style to the brushstrokes and the painting process through collaboration with a human artist. In this paper, we describe our approach to 1) collect brushstrokes and hand-brush motion samples from an artist, and 2) train a generative model to generate brushstrokes that pertains to the artist’s style, and 3) fine tune a stroke-based rendering model to work with our robotic painting setup. We will report on the integration of these three steps in a separate publication. In a preliminary study, 71% of human evaluators find our reconstructed brushstrokes are pertaining to the characteristics of the artist’s style. Moreover, 58% of participants could not distinguish a painting made by our method from a visually similar painting created by a human artist.
Published in: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)
Date of Conference: 31 August 2020 - 04 September 2020
Date Added to IEEE Xplore: 14 October 2020
ISBN Information: