Abstract:
Potholes are a structural damage to the road with hollow which can cause severe traffic accidents and impact road efficiency. In this paper, we propose an efficient potho...Show MoreMetadata
Abstract:
Potholes are a structural damage to the road with hollow which can cause severe traffic accidents and impact road efficiency. In this paper, we propose an efficient pothole detection system using deep learning algorithms which can detect potholes on the road automatically. Four models are trained and tested with preprocessed dataset, including YOLO V3, SSD, HOG with SVM and Faster R-CNN. In the phase one, initial images with potholes and non-potholes are collected and labeled. In the phase two, the four models are trained and tested for the accuracy and loss comparison with the processed image dataset. Finally, the accuracy and performance of all four models are analyzed. The experimental results show that the YOLO V3 model performs best for its faster and more reliable detection results.
Published in: 2020 IEEE Sixth International Conference on Big Data Computing Service and Applications (BigDataService)
Date of Conference: 03-06 August 2020
Date Added to IEEE Xplore: 28 August 2020
ISBN Information: