Abstract:
Origin-destination (OD) matrices are used widely in transportation and logistics to record the travel cost (e.g., travel speed or greenhouse gas emission) between pairs o...Show MoreMetadata
Abstract:
Origin-destination (OD) matrices are used widely in transportation and logistics to record the travel cost (e.g., travel speed or greenhouse gas emission) between pairs of OD regions during different intervals within a day. We model a travel cost as a distribution because when traveling between a pair of OD regions, different vehicles may travel at different speeds even during the same interval, e.g., due to different driving styles or different waiting times at intersections. This yields stochastic OD matrices. We consider an increasingly pertinent setting where a set of vehicle trips is used for instantiating OD matrices. Since the trips may not cover all OD pairs for each interval, the resulting OD matrices are likely to be sparse. We then address the problem of forecasting complete, near future OD matrices from sparse, historical OD matrices. To solve this problem, we propose a generic learning framework that (i) employs matrix factorization and graph convolutional neural networks to contend with the data sparseness while capturing spatial correlations and that (ii) captures spatio-temporal dynamics via recurrent neural networks extended with graph convolutions. Empirical studies using two taxi trajectory data sets offer detailed insight into the properties of the framework and indicate that it is effective.
Date of Conference: 20-24 April 2020
Date Added to IEEE Xplore: 27 May 2020
ISBN Information:
ISSN Information:
Keywords assist with retrieval of results and provide a means to discovering other relevant content. Learn more.
- IEEE Keywords
- Index Terms
- Neural Network ,
- Forecasting ,
- Recurrent Neural Network ,
- Transition Probability Matrix ,
- Graph Convolution ,
- Origin-destination Matrix ,
- Greenhouse Gas ,
- Factorization ,
- Convolutional Neural Network ,
- Sparse Data ,
- Travel Costs ,
- Graph Convolutional Network ,
- Travel Speed ,
- Origin-destination Pairs ,
- Time Interval ,
- Local Services ,
- Travel Time ,
- York City ,
- Average Speed ,
- Spatial Dependence ,
- Region Of Origin ,
- Destination Regions ,
- Earth Mover’s Distance ,
- Proximity Matrix ,
- Spatiotemporal Correlation ,
- Gated Recurrent Unit ,
- Number Of Filters ,
- Multi-task Learning ,
- Jensen-Shannon Divergence ,
- Forecast Accuracy
Keywords assist with retrieval of results and provide a means to discovering other relevant content. Learn more.
- IEEE Keywords
- Index Terms
- Neural Network ,
- Forecasting ,
- Recurrent Neural Network ,
- Transition Probability Matrix ,
- Graph Convolution ,
- Origin-destination Matrix ,
- Greenhouse Gas ,
- Factorization ,
- Convolutional Neural Network ,
- Sparse Data ,
- Travel Costs ,
- Graph Convolutional Network ,
- Travel Speed ,
- Origin-destination Pairs ,
- Time Interval ,
- Local Services ,
- Travel Time ,
- York City ,
- Average Speed ,
- Spatial Dependence ,
- Region Of Origin ,
- Destination Regions ,
- Earth Mover’s Distance ,
- Proximity Matrix ,
- Spatiotemporal Correlation ,
- Gated Recurrent Unit ,
- Number Of Filters ,
- Multi-task Learning ,
- Jensen-Shannon Divergence ,
- Forecast Accuracy