FDTD Simulation of Dispersive Metasurfaces With Lorentzian Surface Susceptibilities | IEEE Journals & Magazine | IEEE Xplore

FDTD Simulation of Dispersive Metasurfaces With Lorentzian Surface Susceptibilities


Yee-cell configurations integrating a zero thickness metasurface in bulk nodes.

Abstract:

A Finite-Difference Time-Domain (FDTD) simulation of broadband electromagnetic metasurfaces based on direct incorporation of Generalized Sheet Transition Conditions (GSTC...Show More

Abstract:

A Finite-Difference Time-Domain (FDTD) simulation of broadband electromagnetic metasurfaces based on direct incorporation of Generalized Sheet Transition Conditions (GSTCs) into a conventional Yee-cell region has been proposed for arbitrary wave excitations. This is achieved by inserting a zero thickness metasurface inside bulk nodes of the Yee-cell region, giving rise to three distinct cell configurations - Symmetric Cell (SC), Asymmetric Cell (AC) and Tight Asymmetric Cell (TAC). In addition, the metasurface is modelled using electric and magnetic surface susceptibilities exhibiting a broadband Lorentzian response. As a result, the proposed model guarantees a physical and causal response from the metasurface. Several full-wave results are shown and compared with analytical Fourier propagation methods showing excellent results for both 1D and 2D field simulations. It is found that the TAC provides the fastest convergence among the three methods with minimum error.
Yee-cell configurations integrating a zero thickness metasurface in bulk nodes.
Published in: IEEE Access ( Volume: 8)
Page(s): 83027 - 83040
Date of Publication: 05 May 2020
Electronic ISSN: 2169-3536

References

References is not available for this document.