Bayesian-based Hyperparameter Optimization for Spiking Neuromorphic Systems | IEEE Conference Publication | IEEE Xplore

Bayesian-based Hyperparameter Optimization for Spiking Neuromorphic Systems


Abstract:

Designing a neuromorphic computing system involves selection of several hyperparameters that not only affect the accuracy of the framework, but also the energy efficiency...Show More

Abstract:

Designing a neuromorphic computing system involves selection of several hyperparameters that not only affect the accuracy of the framework, but also the energy efficiency and speed of inference and training. These hyperparameters might be inherent to the training of the spiking neural network (SNN), the input/output encoding of the real-world data to spikes, or the underlying neuromorphic hardware. In this work, we present a Bayesian-based hyperparameter optimization approach for spiking neuromorphic systems, and we show how this optimization framework can lead to significant improvement in designing accurate neuromorphic computing systems. In particular, we show that this hyperparameter optimization approach can discover the same optimal hyperparameter set for input encoding as a grid search, but with far fewer evaluations and far less time. We also show the impact of hardware-specific hyperparameters on the performance of the system, and we demonstrate that by optimizing these hyperparameters, we can achieve significantly better application performance.
Date of Conference: 09-12 December 2019
Date Added to IEEE Xplore: 24 February 2020
ISBN Information:
Conference Location: Los Angeles, CA, USA

Contact IEEE to Subscribe

References

References is not available for this document.