Abstract:
Knowledge Base Question Answering (KBQA) has attracted much attention and recently there has been more interest in multi-hop KBQA. In this paper, we propose a novel itera...Show MoreMetadata
Abstract:
Knowledge Base Question Answering (KBQA) has attracted much attention and recently there has been more interest in multi-hop KBQA. In this paper, we propose a novel iterative sequence matching model to address several limitations of previous methods for multi-hop KBQA. Our method iteratively grows the candidate relation paths that may lead to answer entities. The method prunes away less relevant branches and incrementally assigns matching scores to the paths. Empirical results demonstrate that our method can significantly outperform existing methods on three different benchmark datasets.
Published in: 2019 IEEE International Conference on Data Mining (ICDM)
Date of Conference: 08-11 November 2019
Date Added to IEEE Xplore: 30 January 2020
ISBN Information: