Processing math: 100%
A Posterior-Neighborhood-Regularized Latent Factor Model for Highly Accurate Web Service QoS Prediction | IEEE Journals & Magazine | IEEE Xplore

A Posterior-Neighborhood-Regularized Latent Factor Model for Highly Accurate Web Service QoS Prediction


Abstract:

Neighborhood regularization is highly important for a latent factor (LF)-based Quality-of-Service (QoS)-predictor since similar users usually experience similar QoS when ...Show More

Abstract:

Neighborhood regularization is highly important for a latent factor (LF)-based Quality-of-Service (QoS)-predictor since similar users usually experience similar QoS when invoking similar services. Current neighborhood-regularized LF models rely prior information on neighborhood obtained from common raw QoS data or geographical information. The former suffers from low prediction accuracy due to the difficulty of constructing the neighborhood based on incomplete QoS data, while the latter requires additional geographical information that is usually difficult to collect considering information security, identity privacy, and commercial interests in real-world scenarios. To address the above issues, this work proposes a posterior-neighborhood-regularized LF (PLF) model for QoS prediction. The main idea is to decompose the LF analysis process into three phases: a) primal LF extraction, where the LFs are extracted to represent involved users/services based on known QoS data, b) posterior-neighborhood construction, where the neighborhood of each user/service is achieved based on similarities between their primal LF vectors, and c) posterior-neighborhood-regularized LF analysis, where the objective function is regularized by both the posterior-neighborhood of users/services and L_{2}-norm of desired LFs. Experimental results from large scale QoS datasets demonstrate that PLF outperforms state-of-the-art models in terms of both accuracy and efficiency.
Published in: IEEE Transactions on Services Computing ( Volume: 15, Issue: 2, 01 March-April 2022)
Page(s): 793 - 805
Date of Publication: 24 December 2019

ISSN Information:

Funding Agency:


References

References is not available for this document.