Flow diagram of proximity detection.
Abstract:
Given a set of moving objects as well as their friend relationships, a time-aware road network, and a time threshold per friend pair, the proximity detection problem in t...Show MoreMetadata
Abstract:
Given a set of moving objects as well as their friend relationships, a time-aware road network, and a time threshold per friend pair, the proximity detection problem in time-aware road networks is to find each pair of moving objects such that the time distance (defined as the shortest time needed for two moving objects to meet each other) between them is within the given threshold. The problem of proximity detection is often encountered in autonomous driving and traffic safety related applications, which require low-latency, real time proximity detection with relatively low communication cost. However, (i) most existing proximity detection solutions focus on the Euclidean space which cannot be used in road network space, (ii) the solutions for road networks focus on static road networks and do not consider time distance and thus cannot be applied in time-aware road networks, and (iii) there are no works aiming to simultaneously reduce the communication cost, the communication latency, and computational cost. Motivated by these, we first design a low-latency proximity detection architecture based on Mobile Edge Computing (MEC) with the purpose of achieving low communication latency, then propose a proximity detection method including a client-side algorithm and a server-side algorithm, aiming at reducing the communication cost, and subsequently propose server-side computational cost optimization techniques to reduce the computational cost. Experimental results show that our MEC enhanced proximity detection architecture, our proximity detection method, and the server-side computational cost optimization techniques can reduce the communication latency, the communication cost, and the computational cost effectively.
Flow diagram of proximity detection.
Published in: IEEE Access ( Volume: 7)