Predicting Animation Skeletons for 3D Articulated Models via Volumetric Nets | IEEE Conference Publication | IEEE Xplore

Predicting Animation Skeletons for 3D Articulated Models via Volumetric Nets


Abstract:

We present a learning method for predicting animation skeletons for input 3D models of articulated characters. In contrast to previous approaches that fit pre-defined ske...Show More

Abstract:

We present a learning method for predicting animation skeletons for input 3D models of articulated characters. In contrast to previous approaches that fit pre-defined skeleton templates or predict fixed sets of joints, our method produces an animation skeleton tailored for the structure and geometry of the input 3D model. Our architecture is based on a stack of hourglass modules trained on a large dataset of 3D rigged characters mined from the web. It operates on the volumetric representation of the input 3D shapes augmented with geometric shape features that provide additional cues for joint and bone locations. Our method also enables intuitive user control of the level-of-detail for the output skeleton. Our evaluation demonstrates that our approach predicts animation skeletons that are much more similar to the ones created by humans compared to several alternatives and baselines.
Date of Conference: 16-19 September 2019
Date Added to IEEE Xplore: 31 October 2019
ISBN Information:

ISSN Information:

Conference Location: Quebec City, QC, Canada

Contact IEEE to Subscribe

References

References is not available for this document.