Quantitative Evaluation of Crack Depths on Thin Aluminum Plate Using Eddy Current Pulse-Compression Thermography | IEEE Journals & Magazine | IEEE Xplore

Quantitative Evaluation of Crack Depths on Thin Aluminum Plate Using Eddy Current Pulse-Compression Thermography


Abstract:

Eddy current (EC) stimulated thermography is an emerging technique for nondestructive testing and evaluation of conductive materials. However, quantitative estimation of ...Show More

Abstract:

Eddy current (EC) stimulated thermography is an emerging technique for nondestructive testing and evaluation of conductive materials. However, quantitative estimation of the depth of subsurface defects in metallic materials by thermography techniques remains challenging due to significant lateral thermal diffusion. This article presents the application of eddy current (EC) pulse-compression thermography to detect surface and subsurface defects with various depths in an aluminum (AL) sample. Kernel principal component analysis and low rank sparse modeling were used to enhance the defective area, and cross-point feature was exploited to quantitatively evaluate the defects' depth. Based on experimental results, it is shown that the crossing point feature has a monotonic relationship with surface and subsurface defects' depth, and it can also indicate whether the defect is within or beyond the EC skin depth. In addition, the comparison study between AL and composites in terms of impulse response and proposed features are also presented.
Published in: IEEE Transactions on Industrial Informatics ( Volume: 16, Issue: 6, June 2020)
Page(s): 3963 - 3973
Date of Publication: 25 September 2019

ISSN Information:

Funding Agency:


References

References is not available for this document.