Loading [MathJax]/extensions/MathMenu.js
Evolving Deep CNN-LSTMs for Inventory Time Series Prediction | IEEE Conference Publication | IEEE Xplore

Evolving Deep CNN-LSTMs for Inventory Time Series Prediction


Abstract:

Inventory forecasting is a key component of effective inventory management. In this work, we utilise hybrid deep learning models for inventory forecasting. According to t...Show More

Abstract:

Inventory forecasting is a key component of effective inventory management. In this work, we utilise hybrid deep learning models for inventory forecasting. According to the highly nonlinear and non-stationary characteristics of inventory data, the models employ Long Short-Term Memory (LSTM) to capture long temporal dependencies and Convolutional Neural Network (CNN) to learn the local trend features. However, designing optimal CNN-LSTM network architecture and tuning parameters can be challenging and would require consistent human supervision. To automate optimal architecture searching of CNN-LSTM, we implement three meta-heuristics: a Particle Swarm Optimisation (PSO) and two Differential Evolution (DE) variants. Computational experiments on real-world inventory forecasting problems are conducted to evaluate the performance of the applied meta-heuristics in terms of evolved network architectures for obtaining prediction accuracy. Moreover, the evolved CNN-LSTM models are also compared to Seasonal Auto-regressive Integrated Moving Average (SARIMA) models for inventory forecasting problems. The experimental results indicate that the evolved CNN-LSTM models are capable of dealing with complex nonlinear inventory forecasting problem.
Date of Conference: 10-13 June 2019
Date Added to IEEE Xplore: 08 August 2019
ISBN Information:
Conference Location: Wellington, New Zealand

Contact IEEE to Subscribe

References

References is not available for this document.