Loading [MathJax]/extensions/MathMenu.js
MAGNETIC: Multi-Agent Machine Learning-Based Approach for Energy Efficient Dynamic Consolidation in Data Centers | IEEE Journals & Magazine | IEEE Xplore

MAGNETIC: Multi-Agent Machine Learning-Based Approach for Energy Efficient Dynamic Consolidation in Data Centers


Abstract:

Improving the energy efficiency of data centers while guaranteeing Quality of Service (QoS), together with detecting performance variability of servers caused by either h...Show More

Abstract:

Improving the energy efficiency of data centers while guaranteeing Quality of Service (QoS), together with detecting performance variability of servers caused by either hardware or software failures, are two of the major challenges for efficient resource management of large-scale cloud infrastructures. Previous works in the area of dynamic Virtual Machine (VM) consolidation are mostly focused on addressing the energy challenge, but fall short in proposing comprehensive, scalable, and low-overhead approaches that jointly tackle energy efficiency and performance variability. Moreover, they usually assume over-simplistic power models, and fail to accurately consider all the delay and power costs associated with VM migration and host power mode transition. These assumptions are no longer valid in modern servers executing heterogeneous workloads and lead to unrealistic or inefficient results. In this paper, we propose a centralized-distributed low-overhead failure-aware dynamic VM consolidation strategy to minimize energy consumption in large-scale data centers. Our approach selects the most adequate power mode and frequency of each host during runtime using a distributed multi-agent Machine Learning (ML) based strategy, and migrates the VMs accordingly using a centralized heuristic. Our Multi-AGent machine learNing-based approach for Energy efficienT dynamIc Consolidation (MAGNETIC) is implemented in a modified version of the CloudSim simulator, and considers the energy and delay overheads associated with host power mode transition and VM migration, and is evaluated using power traces collected from various workloads running in real servers and resource utilization logs from cloud data center infrastructures. Results show how our strategy reduces data center energy consumption by up to 15 percent compared to other works in the state-of-the-art (SoA), guaranteeing the same QoS and reducing the number of VM migrations and host power mode transitions by up to 86 and 90 per...
Published in: IEEE Transactions on Services Computing ( Volume: 15, Issue: 1, 01 Jan.-Feb. 2022)
Page(s): 30 - 44
Date of Publication: 31 May 2019

ISSN Information:

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.