Abstract:
A passive full-wave micromodeling circuit (FW-MMC) is proposed for high-speed/frequency interconnection problems. The circuit is derived from an FW generalized partial el...Show MoreMetadata
Abstract:
A passive full-wave micromodeling circuit (FW-MMC) is proposed for high-speed/frequency interconnection problems. The circuit is derived from an FW generalized partial element equivalent circuit (G-PEEC) model, in which the radiation effect and other FW phenomena are fully taken into account. The proposed concise physically sensible circuit is obtained by recursively using a physics-based equivalent circuit transformation for absorbing the insignificant nodes of the G-PEEC model. To ensure the fidelity of the physical nature and the passivity of the MMC, the necessary broad sense criterion and the sufficient narrow sense criterion are systematically derived. It has been shown through numerical examples that the passivity violation of the physically sensible circuit model is very weak and can be effectively mediated. Thanks to the one order of magnitude reduction in the model order, the simulations for frequency- and time-domain system responses using the proposed MMC are three and two orders of magnitude faster, respectively, as compared with the G-PEEC model. Two practical examples for both frequency- and time- domains are given to demonstrate the high fidelity, scalability, accuracy, passivity, and efficiency of the FW-MMC.
Published in: IEEE Transactions on Microwave Theory and Techniques ( Volume: 67, Issue: 6, June 2019)