Abstract:
Sound event detection (SED) entails two subtasks: recognizing what types of sound events are present in an audio stream (audio tagging), and pinpointing their onset and o...Show MoreMetadata
Abstract:
Sound event detection (SED) entails two subtasks: recognizing what types of sound events are present in an audio stream (audio tagging), and pinpointing their onset and offset times (localization). In the popular multiple instance learning (MIL) framework for SED with weak labeling, an important component is the pooling function. This paper compares five types of pooling functions both theoretically and experimentally, with special focus on their performance of localization. Although the attention pooling function is currently receiving the most attention, we find the linear softmax pooling function to perform the best among the five. Using this pooling function, we build a neural network called TALNet. It is the first system to reach state-of-the-art audio tagging performance on Audio Set, while exhibiting strong localization performance on the DCASE 2017 challenge at the same time.
Published in: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Date of Conference: 12-17 May 2019
Date Added to IEEE Xplore: 17 April 2019
ISBN Information: