Loading [MathJax]/extensions/MathZoom.js
SuperPart: Supervised Graph Partitioning for Record Linkage | IEEE Conference Publication | IEEE Xplore

SuperPart: Supervised Graph Partitioning for Record Linkage


Abstract:

Identifying sets of items that are equivalent to one another is a problem common to many fields. Systems addressing this generally have at their core a function s(d_i, d_...Show More

Abstract:

Identifying sets of items that are equivalent to one another is a problem common to many fields. Systems addressing this generally have at their core a function s(d_i, d_j) for computing the similarity between pairs of records d_i, d_j. The output of s() can be interpreted as a weighted graph where edges indicate the likelihood of two records matching. Partitioning this graph into equivalence classes is non-trivial due to the presence of inconsistencies and imperfections in s(). Numerous algorithmic approaches to the problem have been proposed, but (1) it is unclear which approach should be used on a given dataset; (2) the algorithms do not generally output a confidence in their decisions; and (3) require error-prone tuning to a particular notion of ground truth. We present SuperPart, a scalable, supervised learning approach to graph partitioning. We demonstrate that SuperPart yields competitive results on the problem of detecting equivalent records without manual selection of algorithms or an exhaustive search over hyperparameters. Also, we show the quality of SuperPart's confidence measures by reporting Area Under the Precision-Recall Curve metrics that exceed a baseline measure by 11%. Finally, to bolster additional research in this domain, we release three new datasets derived from real-world Amazon product data along with ground-truth partitionings.
Date of Conference: 17-20 November 2018
Date Added to IEEE Xplore: 30 December 2018
ISBN Information:

ISSN Information:

Conference Location: Singapore

References

References is not available for this document.