Loading [a11y]/accessibility-menu.js
Laius: An 8-Bit Fixed-Point CNN Hardware Inference Engine | IEEE Conference Publication | IEEE Xplore

Laius: An 8-Bit Fixed-Point CNN Hardware Inference Engine


Abstract:

Convolutional Neural Network (CNN) is one of the most effective neural network model for many classification tasks, such as voice recognition, computer vision and biologi...Show More

Abstract:

Convolutional Neural Network (CNN) is one of the most effective neural network model for many classification tasks, such as voice recognition, computer vision and biological information processing. Unfortunately, Computation of CNN is both memory-intensive and computation-intensive, which brings a huge challenge to the design of the hardware accelerators. A large number of hardware accelerators for CNN inference are designed by the industry and the academia. Most of the engines are based on 32-bit floating point matrix multiplication, where the data precision is over-provisioned for inference job and the hardware cost are too high. In this paper, a 8-bit fixed-point LeNet inference engine (Laius) is designed and implemented on FPGA. In order to reduce the consumption of FPGA resource, we proposed a methodology to find the optimal bit-length for weight and bias in LeNet, which results in using 8-bit fixed point for most of the computation and using 16-bit fixed point for other computation. The PE (Processing Element) design is proposed. Pipelining and PE tiling technique is use to improve the performance of the inference engine. By theoretical analysis, we came to the conclusion that DSP resource in FPGA is the most critical resource, it should be carefully used during the design process. We implement the inference engine on Xilinx 485t FPGA. Experiment result shows that the designed LeNet inference engine can achieve 44.9 Gops throughput with 8-bit fixed-point operation after pipelining. Moreover, with only 1% loss of accuracy, the 8-bit fixed-point engine largely reduce 31.43% in latency, 87.01% in LUT consumption, 66.50% in BRAM consumption, 65.11% in DSP consumption and 47.95% reduction in power compared to a 32-bit fixed-point inference engine with the same structure.
Date of Conference: 12-15 December 2017
Date Added to IEEE Xplore: 28 May 2018
ISBN Information:
Conference Location: Guangzhou, China

References

References is not available for this document.