Loading [a11y]/accessibility-menu.js
Diverse Region-Based CNN for Hyperspectral Image Classification | IEEE Journals & Magazine | IEEE Xplore

Diverse Region-Based CNN for Hyperspectral Image Classification


Abstract:

Convolutional neural network (CNN) is of great interest in machine learning and has demonstrated excellent performance in hyperspectral image classification. In this pape...Show More

Abstract:

Convolutional neural network (CNN) is of great interest in machine learning and has demonstrated excellent performance in hyperspectral image classification. In this paper, we propose a classification framework, called diverse region-based CNN, which can encode semantic context-aware representation to obtain promising features. With merging a diverse set of discriminative appearance factors, the resulting CNN-based representation exhibits spatial-spectral context sensitivity that is essential for accurate pixel classification. The proposed method exploiting diverse region-based inputs to learn contextual interactional features is expected to have more discriminative power. The joint representation containing rich spectral and spatial information is then fed to a fully connected network and the label of each pixel vector is predicted by a softmax layer. Experimental results with widely used hyperspectral image data sets demonstrate that the proposed method can surpass any other conventional deep learning-based classifiers and other state-of-the-art classifiers.
Published in: IEEE Transactions on Image Processing ( Volume: 27, Issue: 6, June 2018)
Page(s): 2623 - 2634
Date of Publication: 28 February 2018

ISSN Information:

PubMed ID: 29533899

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.