Loading [MathJax]/extensions/MathMenu.js
Deep learning for 2D scan matching and loop closure | IEEE Conference Publication | IEEE Xplore

Deep learning for 2D scan matching and loop closure


Abstract:

Although 2D LiDAR based Simultaneous Localization and Mapping (SLAM) is a relatively mature topic nowadays, the loop closure problem remains challenging due to the lack o...Show More

Abstract:

Although 2D LiDAR based Simultaneous Localization and Mapping (SLAM) is a relatively mature topic nowadays, the loop closure problem remains challenging due to the lack of distinctive features in 2D LiDAR range scans. Existing research can be roughly divided into correlation based approaches e.g. scan-to-submap matching and feature based methods e.g. bag-of-words (BoW). In this paper, we solve loop closure detection and relative pose transformation using 2D LiDAR within an end-to-end Deep Learning framework. The algorithm is verified with simulation data and on an Unmanned Aerial Vehicle (UAV) flying in indoor environment. The loop detection ConvNet alone achieves an accuracy of 98.2% in loop closure detection. With a verification step using the scan matching ConvNet, the false positive rate drops to around 0.001%. The proposed approach processes 6000 pairs of raw LiDAR scans per second on a Nvidia GTX1080 GPU.
Date of Conference: 24-28 September 2017
Date Added to IEEE Xplore: 14 December 2017
ISBN Information:
Electronic ISSN: 2153-0866
Conference Location: Vancouver, BC, Canada

Contact IEEE to Subscribe

References

References is not available for this document.