Abstract:
Additive manufacturing (AM) enables flexible part geometry and functionality, and reduces product development life cycle by direct layer-wise fabrication from CAD files. ...Show MoreMetadata
Abstract:
Additive manufacturing (AM) enables flexible part geometry and functionality, and reduces product development life cycle by direct layer-wise fabrication from CAD files. In the last decade, great achievements are made on AM materials, machines, processes, etc. However, the quality of the AM parts is still questionable for industrial specifications. On the one hand, AM part quality variables can be either quantitative, such as dimensional accuracy, or qualitative, such as binary indicators for voids, missing features, or surface roughness. On the other hand, both offline process setting variables and functional in situ process variables can be measured and modeled with both quantitative and qualitative (QQ) quality response variables. In this paper, the QQ quality response variables are modeled by offline process setting variables and in situ process variables via functional QQ models. The modeling of these in situ process variables provides the basis for real-time monitoring and control for AM processes. Simulation studies and experimental data from a fused deposition modeling process are performed to demonstrate the effectiveness of the proposed method.
Published in: IEEE Transactions on Automation Science and Engineering ( Volume: 15, Issue: 1, January 2018)