Abstract:
We study the problem of reducing the amount of communication in a distributed target tracking problem. We focus on the scenario where a team of robots are allowed to move...Show MoreMetadata
Abstract:
We study the problem of reducing the amount of communication in a distributed target tracking problem. We focus on the scenario where a team of robots are allowed to move on the boundary of the environment. Their goal is to seek a formation so as to best track a target moving in the interior of the environment. The robots are capable of measuring distances to the target. Decentralized control strategies have been proposed in the past that guarantee that the robots asymptotically converge to the optimal formation. However, existing methods require that the robots exchange information with their neighbors at all time steps. Instead, we focus on reducing the amount of communication among robots. We propose a self-triggered communication strategy that decides when a particular robot should seek up-to-date information from its neighbors and when it is safe to operate with possibly outdated information from the neighbor. We prove that this strategy converges to an optimal formation. We compare the two approaches (constant communication and self-triggered communication) through simulations of tracking stationary and mobile targets.
Date of Conference: 29 May 2017 - 03 June 2017
Date Added to IEEE Xplore: 24 July 2017
ISBN Information: