Loading [MathJax]/extensions/MathZoom.js
Sparse eigenvectors of graphs | IEEE Conference Publication | IEEE Xplore

Sparse eigenvectors of graphs


Abstract:

In order to analyze signals defined over graphs, many concepts from the classical signal processing theory have been extended to the graph case. One of these concepts is ...Show More

Abstract:

In order to analyze signals defined over graphs, many concepts from the classical signal processing theory have been extended to the graph case. One of these concepts is the uncertainty principle, which studies the concentration of a signal on a graph and its graph Fourier basis (GFB). An eigenvector of a graph is the most localized signal in the GFB by definition, whereas it may not be localized in the vertex domain. However, if the eigenvector itself is sparse, then it is concentrated in both domains simultaneously. In this regard, this paper studies the necessary and sufficient conditions for the existence of 1, 2, and 3-sparse eigenvectors of the graph Laplacian. The provided conditions are purely algebraic and only use the adjacency information of the graph. Examples of both classical and real-world graphs with sparse eigenvectors are also presented.
Date of Conference: 05-09 March 2017
Date Added to IEEE Xplore: 19 June 2017
ISBN Information:
Electronic ISSN: 2379-190X
Conference Location: New Orleans, LA, USA

Contact IEEE to Subscribe

References

References is not available for this document.