Loading [a11y]/accessibility-menu.js
Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View That Includes Motifs, Discords and Shapelets | IEEE Conference Publication | IEEE Xplore

Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View That Includes Motifs, Discords and Shapelets


Abstract:

The all-pairs-similarity-search (or similarity join) problem has been extensively studied for text and a handful of other datatypes. However, surprisingly little progress...Show More

Abstract:

The all-pairs-similarity-search (or similarity join) problem has been extensively studied for text and a handful of other datatypes. However, surprisingly little progress has been made on similarity joins for time series subsequences. The lack of progress probably stems from the daunting nature of the problem. For even modest sized datasets the obvious nested-loop algorithm can take months, and the typical speed-up techniques in this domain (i.e., indexing, lower-bounding, triangular-inequality pruning and early abandoning) at best produce one or two orders of magnitude speedup. In this work we introduce a novel scalable algorithm for time series subsequence all-pairs-similarity-search. For exceptionally large datasets, the algorithm can be trivially cast as an anytime algorithm and produce high-quality approximate solutions in reasonable time. The exact similarity join algorithm computes the answer to the time series motif and time series discord problem as a side-effect, and our algorithm incidentally provides the fastest known algorithm for both these extensively-studied problems. We demonstrate the utility of our ideas for two time series data mining problems, including motif discovery and novelty discovery.
Date of Conference: 12-15 December 2016
Date Added to IEEE Xplore: 02 February 2017
ISBN Information:
Electronic ISSN: 2374-8486
Conference Location: Barcelona, Spain

Contact IEEE to Subscribe

References

References is not available for this document.