Abstract:
This paper presents the initial implementation of an acoustic synchronization and ranging system to enable the control and cooperation of multiple Unmanned Underwater Veh...Show MoreMetadata
Abstract:
This paper presents the initial implementation of an acoustic synchronization and ranging system to enable the control and cooperation of multiple Unmanned Underwater Vehicles (UUVs). Our solution is based on acoustic clock synchronization and one-way ranging. It requires minimum overhead while providing accurate and quick estimation of the relative distances among underwater nodes. The use of one-way ranging allows to scale up to large teams of UUVs and reduces the energy consumption of localization techniques. Our solution has been implemented in SUNSET, leveraging on the accurate timing information and scheduled transmissions provided by SeaModem acoustic modems. Chip Scale Atomic Clocks have been integrated in the SeaModem to overcome the typical drift of real-time clocks thus enabling accurate one-way ranging estimation during long term missions. The performance of the proposed system have been extensively evaluated in two at-sea campaigns considering different testing scenarios. We have shown that our scheme is able to maintain high ranging accuracy over time without requiring the high overhead and energy consumption of two way ranging techniques. We have also shown that the proposed scheme for acoustic synchronization is very effective in synchronizing real-time and atomic clocks of underwater nodes, whenever needed. Our results confirm that the proposed solution for synchronization and one-way ranging allows to enable the control of multiple UUVs keeping at the bay the overhead in the network and the time needed to estimate relative distances.
Published in: OCEANS 2016 - Shanghai
Date of Conference: 10-13 April 2016
Date Added to IEEE Xplore: 09 June 2016
Electronic ISBN:978-1-4673-9724-7