A Dataset of High Impact Bugs: Manually-Classified Issue Reports | IEEE Conference Publication | IEEE Xplore

A Dataset of High Impact Bugs: Manually-Classified Issue Reports


Abstract:

The importance of supporting test and maintenance activities in software development has been increasing, since recent software systems have become large and complex. Alt...Show More

Abstract:

The importance of supporting test and maintenance activities in software development has been increasing, since recent software systems have become large and complex. Although in the field of Mining Software Repositories (MSR) there are many promising approaches to predicting, localizing, and triaging bugs, most of them do not consider impacts of each bug on users and developers but rather treat all bugs with equal weighting, excepting a few studies on high impact bugs including security, performance, blocking, and so forth. To make MSR techniques more actionable and effective in practice, we need deeper understandings of high impact bugs. In this paper we introduced our dataset of high impact bugs which was created by manually reviewing four thousand issue reports in four open source projects (Ambari, Camel, Derby and Wicket).
Date of Conference: 16-17 May 2015
Date Added to IEEE Xplore: 06 August 2015
Electronic ISBN:978-0-7695-5594-2

ISSN Information:

Conference Location: Florence, Italy

Contact IEEE to Subscribe

References

References is not available for this document.