Abstract:
This paper investigates a new approach for face, gender and race classification, called multi-regularized learning (MRL). This approach combines ideas from the recently p...Show MoreMetadata
Abstract:
This paper investigates a new approach for face, gender and race classification, called multi-regularized learning (MRL). This approach combines ideas from the recently proposed algorithms called multi-stage learning (MSL) and multi-task features learning (MTFL). In our approach, we first reduce the dimensionality of the training faces using PCA. Next, for a given a test (probe) face, we use MRL to exploit the relationships among multiple shared stages generated by changing the regularization parameter. Our approach results in convex optimization problem that controls the trade-off between the fidelity to the data (training) and the smoothness of the solution (probe). Our MRL algorithm is compared against different state-of-the-art methods on face recognition (FR), gender classification (GC) and race classification (RC) based on different experimental protocols with AR, LFW, FEI, Lab2 and Indian databases. Results show that our algorithm performs very competitively.
Date of Conference: 27-30 October 2014
Date Added to IEEE Xplore: 29 January 2015
Electronic ISBN:978-1-4799-5751-4